基于语码切换查询的语音词嵌入系统

Murong Ma, Haiwei Wu, Xuyang Wang, Lin Yang, Junjie Wang, Ming Li
{"title":"基于语码切换查询的语音词嵌入系统","authors":"Murong Ma, Haiwei Wu, Xuyang Wang, Lin Yang, Junjie Wang, Ming Li","doi":"10.1109/ISCSLP49672.2021.9362056","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a deep convolutional neural network-based acoustic word embedding system for code-switching query by example spoken term detection. Different from previous configurations, we combine audio data in two languages for training instead of only using one single language. We trans-form the acoustic features of keyword templates and searching content segments obtained in a sliding manner to fixed-dimensional vectors and calculate the distances between them. An auxiliary variability-invariant loss is also applied to training data within the same word but different speakers. This strategy is used to prevent the extractor from encoding undesired speaker- or accent-related information into the acoustic word embeddings. Experimental results show that our proposed sys-tem produces promising searching results in the code-switching test scenario. With the employment of variability-invariant loss, the searching performance is further enhanced.","PeriodicalId":279828,"journal":{"name":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Acoustic Word Embedding System for Code-Switching Query-by-example Spoken Term Detection\",\"authors\":\"Murong Ma, Haiwei Wu, Xuyang Wang, Lin Yang, Junjie Wang, Ming Li\",\"doi\":\"10.1109/ISCSLP49672.2021.9362056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a deep convolutional neural network-based acoustic word embedding system for code-switching query by example spoken term detection. Different from previous configurations, we combine audio data in two languages for training instead of only using one single language. We trans-form the acoustic features of keyword templates and searching content segments obtained in a sliding manner to fixed-dimensional vectors and calculate the distances between them. An auxiliary variability-invariant loss is also applied to training data within the same word but different speakers. This strategy is used to prevent the extractor from encoding undesired speaker- or accent-related information into the acoustic word embeddings. Experimental results show that our proposed sys-tem produces promising searching results in the code-switching test scenario. With the employment of variability-invariant loss, the searching performance is further enhanced.\",\"PeriodicalId\":279828,\"journal\":{\"name\":\"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSLP49672.2021.9362056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP49672.2021.9362056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于深度卷积神经网络的语音词嵌入系统,用于语音词检测的语码切换查询。与之前的配置不同,我们将两种语言的音频数据结合起来进行训练,而不是只使用一种语言。我们将滑动获取的关键词模板和搜索内容段的声学特征转换为固定维向量,并计算它们之间的距离。对于同一词不同说话人的训练数据,也应用了辅助变不变损失。该策略用于防止提取器将不需要的说话人或重音相关信息编码到声学词嵌入中。实验结果表明,该系统在码切换测试场景下取得了良好的搜索效果。利用变不变损失,进一步提高了搜索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic Word Embedding System for Code-Switching Query-by-example Spoken Term Detection
In this paper, we propose a deep convolutional neural network-based acoustic word embedding system for code-switching query by example spoken term detection. Different from previous configurations, we combine audio data in two languages for training instead of only using one single language. We trans-form the acoustic features of keyword templates and searching content segments obtained in a sliding manner to fixed-dimensional vectors and calculate the distances between them. An auxiliary variability-invariant loss is also applied to training data within the same word but different speakers. This strategy is used to prevent the extractor from encoding undesired speaker- or accent-related information into the acoustic word embeddings. Experimental results show that our proposed sys-tem produces promising searching results in the code-switching test scenario. With the employment of variability-invariant loss, the searching performance is further enhanced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信