具有不可观测马尔可夫环境的排队系统有限状态控制器的QBD建模

A. Asanjarani
{"title":"具有不可观测马尔可夫环境的排队系统有限状态控制器的QBD建模","authors":"A. Asanjarani","doi":"10.1145/3016032.3016041","DOIUrl":null,"url":null,"abstract":"We address the problem of stabilizing control for complex queueing systems with known parameters but unobservable Markovian random environment. In such systems, the controller needs to assign servers to queues without having full information about the servers' states. A control challenge is to devise a policy that matches servers to queues in a way that takes state estimates into account. Maximally attainable stability regions are non-trivial. To handle these situations, we model the system under given decision rules. The model is using Quasi-Birth-and-Death (QBD) structure to find a matrix analytic expression for the stability bound. We use this formulation to illustrate how the stability region grows as the number of controller belief states increases.","PeriodicalId":269685,"journal":{"name":"Proceedings of the 11th International Conference on Queueing Theory and Network Applications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"QBD Modelling of a finite state controller for queueing systems with unobservable Markovian environments\",\"authors\":\"A. Asanjarani\",\"doi\":\"10.1145/3016032.3016041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of stabilizing control for complex queueing systems with known parameters but unobservable Markovian random environment. In such systems, the controller needs to assign servers to queues without having full information about the servers' states. A control challenge is to devise a policy that matches servers to queues in a way that takes state estimates into account. Maximally attainable stability regions are non-trivial. To handle these situations, we model the system under given decision rules. The model is using Quasi-Birth-and-Death (QBD) structure to find a matrix analytic expression for the stability bound. We use this formulation to illustrate how the stability region grows as the number of controller belief states increases.\",\"PeriodicalId\":269685,\"journal\":{\"name\":\"Proceedings of the 11th International Conference on Queueing Theory and Network Applications\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th International Conference on Queueing Theory and Network Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3016032.3016041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Conference on Queueing Theory and Network Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3016032.3016041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了参数已知但马尔可夫随机环境不可观测的复杂排队系统的稳定控制问题。在这样的系统中,控制器需要在没有关于服务器状态的完整信息的情况下将服务器分配给队列。控制方面的挑战是设计一种策略,将服务器与队列进行匹配,同时考虑到状态估计。最大可达到的稳定区域是非平凡的。为了处理这些情况,我们在给定的决策规则下对系统建模。该模型采用拟生与死(QBD)结构寻找稳定界的矩阵解析表达式。我们使用这个公式来说明稳定区域如何随着控制器信念状态数量的增加而增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QBD Modelling of a finite state controller for queueing systems with unobservable Markovian environments
We address the problem of stabilizing control for complex queueing systems with known parameters but unobservable Markovian random environment. In such systems, the controller needs to assign servers to queues without having full information about the servers' states. A control challenge is to devise a policy that matches servers to queues in a way that takes state estimates into account. Maximally attainable stability regions are non-trivial. To handle these situations, we model the system under given decision rules. The model is using Quasi-Birth-and-Death (QBD) structure to find a matrix analytic expression for the stability bound. We use this formulation to illustrate how the stability region grows as the number of controller belief states increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信