内容缓存与个性化和现有意识的建议:一种优化方法

Yi Zhao, Zhanwei Yu, Qing He, Di Yuan
{"title":"内容缓存与个性化和现有意识的建议:一种优化方法","authors":"Yi Zhao, Zhanwei Yu, Qing He, Di Yuan","doi":"10.23919/WiOpt56218.2022.9930536","DOIUrl":null,"url":null,"abstract":"Content recommendation can be tailored by not only personal interests, but also the incumbent content, namely the content that a user is currently viewing. Incumbent-aware recommendation adds a new dimension to optimizing content caching. We study this optimization problem subject to user satisfaction constraints. We prove the problem’s NP-hardness, and present an integer linear programming formulation that enables global optimality for small-scale instances. On the algorithmic side, we first present a polynomial-time algorithm that delivers the global optimum of the recommendation sub-problem, by leveraging the problem’s inherent graph structure. Next, we propose a fast, alternating algorithm for the overall problem. Numerical results using synthesized and real-world data show the close-to-optimal performance of the proposed algorithm.","PeriodicalId":228040,"journal":{"name":"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Content Caching with Personalized and Incumbent-aware Recommendation: An optimization Approach\",\"authors\":\"Yi Zhao, Zhanwei Yu, Qing He, Di Yuan\",\"doi\":\"10.23919/WiOpt56218.2022.9930536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content recommendation can be tailored by not only personal interests, but also the incumbent content, namely the content that a user is currently viewing. Incumbent-aware recommendation adds a new dimension to optimizing content caching. We study this optimization problem subject to user satisfaction constraints. We prove the problem’s NP-hardness, and present an integer linear programming formulation that enables global optimality for small-scale instances. On the algorithmic side, we first present a polynomial-time algorithm that delivers the global optimum of the recommendation sub-problem, by leveraging the problem’s inherent graph structure. Next, we propose a fast, alternating algorithm for the overall problem. Numerical results using synthesized and real-world data show the close-to-optimal performance of the proposed algorithm.\",\"PeriodicalId\":228040,\"journal\":{\"name\":\"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WiOpt56218.2022.9930536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WiOpt56218.2022.9930536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

内容推荐不仅可以根据个人兴趣定制,还可以根据现有内容(即用户当前正在观看的内容)定制。感知在位者的推荐为优化内容缓存增加了一个新的维度。我们研究了用户满意度约束下的优化问题。我们证明了问题的np -硬度,并给出了一个整数线性规划公式,使小尺度实例的全局最优性。在算法方面,我们首先提出了一个多项式时间算法,通过利用问题固有的图结构来提供推荐子问题的全局最优。接下来,我们提出一种快速的交替算法来解决整个问题。综合数据和实际数据的数值结果表明,该算法的性能接近最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content Caching with Personalized and Incumbent-aware Recommendation: An optimization Approach
Content recommendation can be tailored by not only personal interests, but also the incumbent content, namely the content that a user is currently viewing. Incumbent-aware recommendation adds a new dimension to optimizing content caching. We study this optimization problem subject to user satisfaction constraints. We prove the problem’s NP-hardness, and present an integer linear programming formulation that enables global optimality for small-scale instances. On the algorithmic side, we first present a polynomial-time algorithm that delivers the global optimum of the recommendation sub-problem, by leveraging the problem’s inherent graph structure. Next, we propose a fast, alternating algorithm for the overall problem. Numerical results using synthesized and real-world data show the close-to-optimal performance of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信