面向数据驱动的物料流模拟建模:基于稀疏生产日志的多agent参数自动标定

S. Nagahara, Susumu Serita, Yuma Shiho, Shuai Zheng, Haiyan Wang, Takafumi Chida, Chetan Gupta
{"title":"面向数据驱动的物料流模拟建模:基于稀疏生产日志的多agent参数自动标定","authors":"S. Nagahara, Susumu Serita, Yuma Shiho, Shuai Zheng, Haiyan Wang, Takafumi Chida, Chetan Gupta","doi":"10.1109/CASE48305.2020.9216832","DOIUrl":null,"url":null,"abstract":"Modeling accurate material flow simulation is a time-consuming task and requires high expertise about both simulation techniques and production system. Recently, data-driven modeling approaches that build simulation models from production log are gathering attentions to automate the modeling process. However, in most practical cases, production log does not have enough resolution to specify the input and output of each agent in material flow simulation such as processing time agent and dispatching agent. For the issue, we proposed a novel approach and method that models multiple agents simultaneously from sparse production log. In our method, agents are described as machine learning models, then parameters in the models are calibrated to minimize simulation error. We confirmed the usefulness of the proposed method through experiments with virtual production system.","PeriodicalId":212181,"journal":{"name":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toward data-driven modeling of material flow simulation: automatic parameter calibration of multiple agents from sparse production log\",\"authors\":\"S. Nagahara, Susumu Serita, Yuma Shiho, Shuai Zheng, Haiyan Wang, Takafumi Chida, Chetan Gupta\",\"doi\":\"10.1109/CASE48305.2020.9216832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling accurate material flow simulation is a time-consuming task and requires high expertise about both simulation techniques and production system. Recently, data-driven modeling approaches that build simulation models from production log are gathering attentions to automate the modeling process. However, in most practical cases, production log does not have enough resolution to specify the input and output of each agent in material flow simulation such as processing time agent and dispatching agent. For the issue, we proposed a novel approach and method that models multiple agents simultaneously from sparse production log. In our method, agents are described as machine learning models, then parameters in the models are calibrated to minimize simulation error. We confirmed the usefulness of the proposed method through experiments with virtual production system.\",\"PeriodicalId\":212181,\"journal\":{\"name\":\"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE48305.2020.9216832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE48305.2020.9216832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

准确的物料流模拟建模是一项耗时的任务,需要对模拟技术和生产系统有很高的专业知识。最近,从生产日志中构建仿真模型的数据驱动建模方法正在引起人们的关注,以实现建模过程的自动化。然而,在大多数实际情况下,生产日志没有足够的分辨率来指定物料流模拟中每个agent的输入和输出,例如加工时间agent和调度agent。针对这一问题,我们提出了一种利用稀疏生产日志同时对多个智能体进行建模的新方法。在我们的方法中,智能体被描述为机器学习模型,然后校准模型中的参数以最小化仿真误差。通过虚拟生产系统的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward data-driven modeling of material flow simulation: automatic parameter calibration of multiple agents from sparse production log
Modeling accurate material flow simulation is a time-consuming task and requires high expertise about both simulation techniques and production system. Recently, data-driven modeling approaches that build simulation models from production log are gathering attentions to automate the modeling process. However, in most practical cases, production log does not have enough resolution to specify the input and output of each agent in material flow simulation such as processing time agent and dispatching agent. For the issue, we proposed a novel approach and method that models multiple agents simultaneously from sparse production log. In our method, agents are described as machine learning models, then parameters in the models are calibrated to minimize simulation error. We confirmed the usefulness of the proposed method through experiments with virtual production system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信