一些自同构群是线性代数的

M. Brion
{"title":"一些自同构群是线性代数的","authors":"M. Brion","doi":"10.17323/1609-4514-2021-21-3-453-466","DOIUrl":null,"url":null,"abstract":"Consider a normal projective variety $X$, a linear algebraic subgroup $G$ of Aut($X$), and the field $K$ of $G$-invariant rational functions on $X$. We show that the subgroup of Aut($X$) that fixes $K$ pointwise is linear algebraic. If $K$ has transcendence degree $1$ over $k$, then Aut($X$) is an algebraic group.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Automorphism Groups are Linear Algebraic\",\"authors\":\"M. Brion\",\"doi\":\"10.17323/1609-4514-2021-21-3-453-466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a normal projective variety $X$, a linear algebraic subgroup $G$ of Aut($X$), and the field $K$ of $G$-invariant rational functions on $X$. We show that the subgroup of Aut($X$) that fixes $K$ pointwise is linear algebraic. If $K$ has transcendence degree $1$ over $k$, then Aut($X$) is an algebraic group.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2021-21-3-453-466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17323/1609-4514-2021-21-3-453-466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个正规射影变量$X$, Aut($X$)的一个线性代数子群$G$,以及$G$的域$K$ - $X$上的不变有理函数。我们证明了Aut($X$)的子群是线性代数的,它使$K$点方向固定。如果$K$对$K$具有超越度$1$,则Aut($X$)是一个代数群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Automorphism Groups are Linear Algebraic
Consider a normal projective variety $X$, a linear algebraic subgroup $G$ of Aut($X$), and the field $K$ of $G$-invariant rational functions on $X$. We show that the subgroup of Aut($X$) that fixes $K$ pointwise is linear algebraic. If $K$ has transcendence degree $1$ over $k$, then Aut($X$) is an algebraic group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信