使用鲁棒人工智能方法进行疾病估计

A. R. Shah, Isma Javed, Usman Shams, Muhammad Asif Naverd, M. Q. Mehmood
{"title":"使用鲁棒人工智能方法进行疾病估计","authors":"A. R. Shah, Isma Javed, Usman Shams, Muhammad Asif Naverd, M. Q. Mehmood","doi":"10.1109/iCoMET57998.2023.10099377","DOIUrl":null,"url":null,"abstract":"Human blood scrutinization is an indispensable step to analyze a particular health condition, comprise of a complete blood cell (CBC) count. CBC accentuates the counting of White blood cells (WBCs), red blood cells (RBCs), and Platelets which are implicitly significant for the analysis of severe maladies such as leukemia, thrombocytopenia, and anemia. Traditional approaches like manual counting and automated analyzer were extensively used, which is monotonous, time intensive, and entail a lot of medical experts. To get rid of aforesaid leisure techniques, here by using a machine learning-based object detection and classification algorithm you only look once (YOLO) to count the blood cells. YOLO with modified configuration has been trained on the customized dataset to detect the WBCs, RBCs, and platelets.","PeriodicalId":369792,"journal":{"name":"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","volume":"492 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Disease estimation using robust AI methods\",\"authors\":\"A. R. Shah, Isma Javed, Usman Shams, Muhammad Asif Naverd, M. Q. Mehmood\",\"doi\":\"10.1109/iCoMET57998.2023.10099377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human blood scrutinization is an indispensable step to analyze a particular health condition, comprise of a complete blood cell (CBC) count. CBC accentuates the counting of White blood cells (WBCs), red blood cells (RBCs), and Platelets which are implicitly significant for the analysis of severe maladies such as leukemia, thrombocytopenia, and anemia. Traditional approaches like manual counting and automated analyzer were extensively used, which is monotonous, time intensive, and entail a lot of medical experts. To get rid of aforesaid leisure techniques, here by using a machine learning-based object detection and classification algorithm you only look once (YOLO) to count the blood cells. YOLO with modified configuration has been trained on the customized dataset to detect the WBCs, RBCs, and platelets.\",\"PeriodicalId\":369792,\"journal\":{\"name\":\"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"volume\":\"492 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iCoMET57998.2023.10099377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCoMET57998.2023.10099377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人体血液检查是分析特定健康状况不可或缺的步骤,包括全血细胞计数。CBC强调白细胞(wbc)、红细胞(rbc)和血小板的计数,这对白血病、血小板减少症和贫血等严重疾病的分析具有隐含意义。传统的方法如人工计数和自动分析仪被广泛使用,这些方法单调、耗时且需要大量的医学专家。为了摆脱上述休闲技术,这里使用基于机器学习的对象检测和分类算法,你只需要看一次(YOLO)就可以计数血细胞。修改配置的YOLO已在自定义数据集上进行训练,以检测白细胞、红细胞和血小板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disease estimation using robust AI methods
Human blood scrutinization is an indispensable step to analyze a particular health condition, comprise of a complete blood cell (CBC) count. CBC accentuates the counting of White blood cells (WBCs), red blood cells (RBCs), and Platelets which are implicitly significant for the analysis of severe maladies such as leukemia, thrombocytopenia, and anemia. Traditional approaches like manual counting and automated analyzer were extensively used, which is monotonous, time intensive, and entail a lot of medical experts. To get rid of aforesaid leisure techniques, here by using a machine learning-based object detection and classification algorithm you only look once (YOLO) to count the blood cells. YOLO with modified configuration has been trained on the customized dataset to detect the WBCs, RBCs, and platelets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信