电网级联故障的计算分析

Dorian Mazauric, Saleh Soltan, G. Zussman
{"title":"电网级联故障的计算分析","authors":"Dorian Mazauric, Saleh Soltan, G. Zussman","doi":"10.1145/2465529.2465752","DOIUrl":null,"url":null,"abstract":"This paper focuses on cascading line failures in the transmission system of the power grid. Such a cascade may have a devastating effect not only on the power grid but also on the interconnected communication networks. Recent large-scale power outages demonstrated the limitations of epidemic- and percolation-based tools in modeling the cascade evolution. Hence, based on a linearized power flow model (that substantially differs from the classical packet flow models), we obtain results regarding the various properties of a cascade. Specifically, we consider performance metrics such as the the distance between failures, the length of the cascade, and the fraction of demand (load) satisfied after the cascade. We show, for example, that due to the unique properties of the model: (i) the distance between subsequent failures can be arbitrarily large and the cascade may be arbitrarily long, (ii) a large set of initial line failures may have a smaller effect than a failure of one of the lines in the set, and (iii) minor changes to the network parameters may have a significant impact. Moreover, we show that finding the set of lines whose removal has the most significant impact (under various metrics) is NP-Hard. Moreover, we develop a fast algorithm to recompute the flows at each step of the cascade. The results can provide insight into the design of smart grid measurement and control algorithms that can mitigate a cascade.","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Computational analysis of cascading failures in power networks\",\"authors\":\"Dorian Mazauric, Saleh Soltan, G. Zussman\",\"doi\":\"10.1145/2465529.2465752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on cascading line failures in the transmission system of the power grid. Such a cascade may have a devastating effect not only on the power grid but also on the interconnected communication networks. Recent large-scale power outages demonstrated the limitations of epidemic- and percolation-based tools in modeling the cascade evolution. Hence, based on a linearized power flow model (that substantially differs from the classical packet flow models), we obtain results regarding the various properties of a cascade. Specifically, we consider performance metrics such as the the distance between failures, the length of the cascade, and the fraction of demand (load) satisfied after the cascade. We show, for example, that due to the unique properties of the model: (i) the distance between subsequent failures can be arbitrarily large and the cascade may be arbitrarily long, (ii) a large set of initial line failures may have a smaller effect than a failure of one of the lines in the set, and (iii) minor changes to the network parameters may have a significant impact. Moreover, we show that finding the set of lines whose removal has the most significant impact (under various metrics) is NP-Hard. Moreover, we develop a fast algorithm to recompute the flows at each step of the cascade. The results can provide insight into the design of smart grid measurement and control algorithms that can mitigate a cascade.\",\"PeriodicalId\":306456,\"journal\":{\"name\":\"Measurement and Modeling of Computer Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465529.2465752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465529.2465752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文主要研究电网输电系统中的级联线路故障。这种级联不仅对电网,而且对相互连接的通信网络都可能造成毁灭性的影响。最近的大规模停电表明,基于流行病和渗漏的工具在级联进化建模方面存在局限性。因此,基于线性化的功率流模型(与经典的包流模型有很大的不同),我们得到了关于级联的各种特性的结果。具体来说,我们考虑诸如故障之间的距离、级联的长度以及级联后满足的需求(负载)的比例等性能指标。例如,我们表明,由于模型的独特属性:(i)后续故障之间的距离可以任意大,级联可以任意长,(ii)一组大的初始线路故障可能比一组线路故障的影响要小,(iii)网络参数的微小变化可能会产生重大影响。此外,我们表明,找到其删除具有最显著影响的线集(在各种指标下)是NP-Hard的。此外,我们还开发了一种快速算法来重新计算串级的每一步流。研究结果可以为智能电网测量和控制算法的设计提供见解,以减轻级联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational analysis of cascading failures in power networks
This paper focuses on cascading line failures in the transmission system of the power grid. Such a cascade may have a devastating effect not only on the power grid but also on the interconnected communication networks. Recent large-scale power outages demonstrated the limitations of epidemic- and percolation-based tools in modeling the cascade evolution. Hence, based on a linearized power flow model (that substantially differs from the classical packet flow models), we obtain results regarding the various properties of a cascade. Specifically, we consider performance metrics such as the the distance between failures, the length of the cascade, and the fraction of demand (load) satisfied after the cascade. We show, for example, that due to the unique properties of the model: (i) the distance between subsequent failures can be arbitrarily large and the cascade may be arbitrarily long, (ii) a large set of initial line failures may have a smaller effect than a failure of one of the lines in the set, and (iii) minor changes to the network parameters may have a significant impact. Moreover, we show that finding the set of lines whose removal has the most significant impact (under various metrics) is NP-Hard. Moreover, we develop a fast algorithm to recompute the flows at each step of the cascade. The results can provide insight into the design of smart grid measurement and control algorithms that can mitigate a cascade.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信