具有2跳邻域的相对定位

C. Mallery, S. Medidi, M. Medidi
{"title":"具有2跳邻域的相对定位","authors":"C. Mallery, S. Medidi, M. Medidi","doi":"10.1109/WOWMOM.2008.4594874","DOIUrl":null,"url":null,"abstract":"Localization is the process in which nodes in a wireless sensor network self-determine their positions in the network. While there are many effective mathematical techniques for solving the problem of localization, most are not suitable for the resource-constrained distributed environment of sensor networks. We propose ANIML an iterative, range-aware relative localization technique for wireless sensor networks that requires no anchor nodes. ANIML restricts itself to the use of only local 1- and 2-hop neighbor information, avoiding the need for information flooding and thus controlling cascading ranging errors that bedevil other localization techniques. While least-squares minimization is a mathematically simple constraint optimization technique, utilizing 1- and 2-hop neighbor information as constraints, ANIML provides better localization without the need for more sophisticated error control and/or global information. We implemented ANIML in ns-2 and conducted extensive experimentation to evaluate its performance. Experimental results show that ANIML provides robust localization and scales well.","PeriodicalId":346269,"journal":{"name":"2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Relative localization with 2-hop neighborhood\",\"authors\":\"C. Mallery, S. Medidi, M. Medidi\",\"doi\":\"10.1109/WOWMOM.2008.4594874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localization is the process in which nodes in a wireless sensor network self-determine their positions in the network. While there are many effective mathematical techniques for solving the problem of localization, most are not suitable for the resource-constrained distributed environment of sensor networks. We propose ANIML an iterative, range-aware relative localization technique for wireless sensor networks that requires no anchor nodes. ANIML restricts itself to the use of only local 1- and 2-hop neighbor information, avoiding the need for information flooding and thus controlling cascading ranging errors that bedevil other localization techniques. While least-squares minimization is a mathematically simple constraint optimization technique, utilizing 1- and 2-hop neighbor information as constraints, ANIML provides better localization without the need for more sophisticated error control and/or global information. We implemented ANIML in ns-2 and conducted extensive experimentation to evaluate its performance. Experimental results show that ANIML provides robust localization and scales well.\",\"PeriodicalId\":346269,\"journal\":{\"name\":\"2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOWMOM.2008.4594874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOWMOM.2008.4594874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

定位是无线传感器网络中节点自我确定其在网络中的位置的过程。虽然有许多有效的数学技术可以解决定位问题,但大多数都不适合传感器网络资源受限的分布式环境。我们提出ANIML是一种迭代的、距离感知的无线传感器网络相对定位技术,不需要锚节点。ANIML限制自己只使用本地的1跳和2跳邻居信息,避免了信息泛滥的需要,从而控制了困扰其他定位技术的级联测距错误。虽然最小二乘最小化是一种数学上简单的约束优化技术,利用1跳和2跳邻居信息作为约束,但ANIML提供了更好的定位,而不需要更复杂的错误控制和/或全局信息。我们在ns-2中实现了ANIML,并进行了广泛的实验来评估其性能。实验结果表明,ANIML具有良好的鲁棒性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative localization with 2-hop neighborhood
Localization is the process in which nodes in a wireless sensor network self-determine their positions in the network. While there are many effective mathematical techniques for solving the problem of localization, most are not suitable for the resource-constrained distributed environment of sensor networks. We propose ANIML an iterative, range-aware relative localization technique for wireless sensor networks that requires no anchor nodes. ANIML restricts itself to the use of only local 1- and 2-hop neighbor information, avoiding the need for information flooding and thus controlling cascading ranging errors that bedevil other localization techniques. While least-squares minimization is a mathematically simple constraint optimization technique, utilizing 1- and 2-hop neighbor information as constraints, ANIML provides better localization without the need for more sophisticated error control and/or global information. We implemented ANIML in ns-2 and conducted extensive experimentation to evaluate its performance. Experimental results show that ANIML provides robust localization and scales well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信