有界树宽图上命中(拓扑)小调的最优算法

Julien Baste, Ignasi Sau, D. Thilikos
{"title":"有界树宽图上命中(拓扑)小调的最优算法","authors":"Julien Baste, Ignasi Sau, D. Thilikos","doi":"10.4230/LIPIcs.IPEC.2017.4","DOIUrl":null,"url":null,"abstract":"For a fixed collection of graphs ${\\cal F}$, the ${\\cal F}$-M-DELETION problem consists in, given a graph $G$ and an integer $k$, decide whether there exists $S \\subseteq V(G)$ with $|S| \\leq k$ such that $G \\setminus S$ does not contain any of the graphs in ${\\cal F}$ as a minor. We are interested in the parameterized complexity of ${\\cal F}$-M-DELETION when the parameter is the treewidth of $G$, denoted by $tw$. Our objective is to determine, for a fixed ${\\cal F}$, the smallest function $f_{{\\cal F}}$ such that ${\\cal F}$-M-DELETION can be solved in time $f_{{\\cal F}}(tw) \\cdot n^{O(1)}$ on $n$-vertex graphs. Using and enhancing the machinery of boundaried graphs and small sets of representatives introduced by Bodlaender et al. [J ACM, 2016], we prove that when all the graphs in ${\\cal F}$ are connected and at least one of them is planar, then $f_{{\\cal F}}(w) = 2^{O (w \\cdot\\log w)}$. When ${\\cal F}$ is a singleton containing a clique, a cycle, or a path on $i$ vertices, we prove the following asymptotically tight bounds: \n$\\bullet$ $f_{\\{K_4\\}}(w) = 2^{\\Theta (w \\cdot \\log w)}$. \n$\\bullet$ $f_{\\{C_i\\}}(w) = 2^{\\Theta (w)}$ for every $i \\leq 4$, and $f_{\\{C_i\\}}(w) = 2^{\\Theta (w \\cdot\\log w)}$ for every $i \\geq 5$. \n$\\bullet$ $f_{\\{P_i\\}}(w) = 2^{\\Theta (w)}$ for every $i \\leq 4$, and $f_{\\{P_i\\}}(w) = 2^{\\Theta (w \\cdot \\log w)}$ for every $i \\geq 6$. \nThe lower bounds hold unless the Exponential Time Hypothesis fails, and the superexponential ones are inspired by a reduction of Marcin Pilipczuk [Discrete Appl Math, 2016]. The single-exponential algorithms use, in particular, the rank-based approach introduced by Bodlaender et al. [Inform Comput, 2015]. We also consider the version of the problem where the graphs in ${\\cal F}$ are forbidden as topological minors, and prove that essentially the same set of results holds.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Optimal Algorithms for Hitting (Topological) Minors on Graphs of Bounded Treewidth\",\"authors\":\"Julien Baste, Ignasi Sau, D. Thilikos\",\"doi\":\"10.4230/LIPIcs.IPEC.2017.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a fixed collection of graphs ${\\\\cal F}$, the ${\\\\cal F}$-M-DELETION problem consists in, given a graph $G$ and an integer $k$, decide whether there exists $S \\\\subseteq V(G)$ with $|S| \\\\leq k$ such that $G \\\\setminus S$ does not contain any of the graphs in ${\\\\cal F}$ as a minor. We are interested in the parameterized complexity of ${\\\\cal F}$-M-DELETION when the parameter is the treewidth of $G$, denoted by $tw$. Our objective is to determine, for a fixed ${\\\\cal F}$, the smallest function $f_{{\\\\cal F}}$ such that ${\\\\cal F}$-M-DELETION can be solved in time $f_{{\\\\cal F}}(tw) \\\\cdot n^{O(1)}$ on $n$-vertex graphs. Using and enhancing the machinery of boundaried graphs and small sets of representatives introduced by Bodlaender et al. [J ACM, 2016], we prove that when all the graphs in ${\\\\cal F}$ are connected and at least one of them is planar, then $f_{{\\\\cal F}}(w) = 2^{O (w \\\\cdot\\\\log w)}$. When ${\\\\cal F}$ is a singleton containing a clique, a cycle, or a path on $i$ vertices, we prove the following asymptotically tight bounds: \\n$\\\\bullet$ $f_{\\\\{K_4\\\\}}(w) = 2^{\\\\Theta (w \\\\cdot \\\\log w)}$. \\n$\\\\bullet$ $f_{\\\\{C_i\\\\}}(w) = 2^{\\\\Theta (w)}$ for every $i \\\\leq 4$, and $f_{\\\\{C_i\\\\}}(w) = 2^{\\\\Theta (w \\\\cdot\\\\log w)}$ for every $i \\\\geq 5$. \\n$\\\\bullet$ $f_{\\\\{P_i\\\\}}(w) = 2^{\\\\Theta (w)}$ for every $i \\\\leq 4$, and $f_{\\\\{P_i\\\\}}(w) = 2^{\\\\Theta (w \\\\cdot \\\\log w)}$ for every $i \\\\geq 6$. \\nThe lower bounds hold unless the Exponential Time Hypothesis fails, and the superexponential ones are inspired by a reduction of Marcin Pilipczuk [Discrete Appl Math, 2016]. The single-exponential algorithms use, in particular, the rank-based approach introduced by Bodlaender et al. [Inform Comput, 2015]. We also consider the version of the problem where the graphs in ${\\\\cal F}$ are forbidden as topological minors, and prove that essentially the same set of results holds.\",\"PeriodicalId\":137775,\"journal\":{\"name\":\"International Symposium on Parameterized and Exact Computation\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Parameterized and Exact Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.IPEC.2017.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2017.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

对于一个固定的图集合${\cal F}$, ${\cal F}$ -M-DELETION问题包括:给定一个图$G$和一个整数$k$,确定$|S| \leq k$是否存在$S \subseteq V(G)$,使得$G \setminus S$不包含${\cal F}$中的任何图作为次要图。当参数为$G$的树宽(用$tw$表示)时,我们感兴趣的是${\cal F}$ -M-DELETION的参数化复杂度。我们的目标是确定,对于一个固定的${\cal F}$,最小的函数$f_{{\cal F}}$,使得${\cal F}$ -M-DELETION可以在$n$ -顶点图上及时解决$f_{{\cal F}}(tw) \cdot n^{O(1)}$。利用并增强Bodlaender等人[J ACM, 2016]引入的有界图和小代表集机制,我们证明了当${\cal F}$中的所有图都连通且至少有一个图是平面的,则$f_{{\cal F}}(w) = 2^{O (w \cdot\log w)}$。当${\cal F}$是包含在$i$顶点上的团、环或路径的单例时,我们证明以下渐近紧界:$\bullet$$f_{\{K_4\}}(w) = 2^{\Theta (w \cdot \log w)}$。$\bullet$$f_{\{C_i\}}(w) = 2^{\Theta (w)}$对应$i \leq 4$, $f_{\{C_i\}}(w) = 2^{\Theta (w \cdot\log w)}$对应$i \geq 5$。$\bullet$$f_{\{P_i\}}(w) = 2^{\Theta (w)}$对应$i \leq 4$, $f_{\{P_i\}}(w) = 2^{\Theta (w \cdot \log w)}$对应$i \geq 6$。除非指数时间假设失效,否则下界保持不变,超指数下界的灵感来自Marcin Pilipczuk的约简[离散应用数学,2016]。单指数算法特别使用了Bodlaender等人引入的基于排名的方法[Inform Comput, 2015]。我们还考虑了问题的版本,其中${\cal F}$中的图被禁止为拓扑子图,并证明了本质上相同的结果集成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Algorithms for Hitting (Topological) Minors on Graphs of Bounded Treewidth
For a fixed collection of graphs ${\cal F}$, the ${\cal F}$-M-DELETION problem consists in, given a graph $G$ and an integer $k$, decide whether there exists $S \subseteq V(G)$ with $|S| \leq k$ such that $G \setminus S$ does not contain any of the graphs in ${\cal F}$ as a minor. We are interested in the parameterized complexity of ${\cal F}$-M-DELETION when the parameter is the treewidth of $G$, denoted by $tw$. Our objective is to determine, for a fixed ${\cal F}$, the smallest function $f_{{\cal F}}$ such that ${\cal F}$-M-DELETION can be solved in time $f_{{\cal F}}(tw) \cdot n^{O(1)}$ on $n$-vertex graphs. Using and enhancing the machinery of boundaried graphs and small sets of representatives introduced by Bodlaender et al. [J ACM, 2016], we prove that when all the graphs in ${\cal F}$ are connected and at least one of them is planar, then $f_{{\cal F}}(w) = 2^{O (w \cdot\log w)}$. When ${\cal F}$ is a singleton containing a clique, a cycle, or a path on $i$ vertices, we prove the following asymptotically tight bounds: $\bullet$ $f_{\{K_4\}}(w) = 2^{\Theta (w \cdot \log w)}$. $\bullet$ $f_{\{C_i\}}(w) = 2^{\Theta (w)}$ for every $i \leq 4$, and $f_{\{C_i\}}(w) = 2^{\Theta (w \cdot\log w)}$ for every $i \geq 5$. $\bullet$ $f_{\{P_i\}}(w) = 2^{\Theta (w)}$ for every $i \leq 4$, and $f_{\{P_i\}}(w) = 2^{\Theta (w \cdot \log w)}$ for every $i \geq 6$. The lower bounds hold unless the Exponential Time Hypothesis fails, and the superexponential ones are inspired by a reduction of Marcin Pilipczuk [Discrete Appl Math, 2016]. The single-exponential algorithms use, in particular, the rank-based approach introduced by Bodlaender et al. [Inform Comput, 2015]. We also consider the version of the problem where the graphs in ${\cal F}$ are forbidden as topological minors, and prove that essentially the same set of results holds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信