关键数据集和机器学习艺术。

Hanna L. Grønneberg, Ana Alacovska
{"title":"关键数据集和机器学习艺术。","authors":"Hanna L. Grønneberg, Ana Alacovska","doi":"10.5771/2747-5174-2022-2-22","DOIUrl":null,"url":null,"abstract":"The paper proposes that artistic practices engaging with datasets on which machine learning (ML) systems are trained can provide caring or curative resistance to digital toxicity and furnish models for imagining more equitable digital futures. The paper provides a critique of harmful practices of data mining and data extraction in ML system development by focusing on artworks that engage pharmacologically, that is critically and restoratively, with these technologies. The three works analyzed are ImageNet Roulette (2019) by Kate Crawford and Trevor Paglen, This Person does Exist (2020) by Mathias Schäfer, and Feminist Dataset (2017-ongoing) by Caroline Sinders. These works, we ague, use defamiliarization as a critical practice when engaging with datasets and ML, providing vital counter-narratives and curative strategies, yet in some cases also deepening and exacerbating the very same technological toxicity they set out to remedy.","PeriodicalId":377128,"journal":{"name":"Morals & Machines","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical Dataset and Machine Learning Art.\",\"authors\":\"Hanna L. Grønneberg, Ana Alacovska\",\"doi\":\"10.5771/2747-5174-2022-2-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes that artistic practices engaging with datasets on which machine learning (ML) systems are trained can provide caring or curative resistance to digital toxicity and furnish models for imagining more equitable digital futures. The paper provides a critique of harmful practices of data mining and data extraction in ML system development by focusing on artworks that engage pharmacologically, that is critically and restoratively, with these technologies. The three works analyzed are ImageNet Roulette (2019) by Kate Crawford and Trevor Paglen, This Person does Exist (2020) by Mathias Schäfer, and Feminist Dataset (2017-ongoing) by Caroline Sinders. These works, we ague, use defamiliarization as a critical practice when engaging with datasets and ML, providing vital counter-narratives and curative strategies, yet in some cases also deepening and exacerbating the very same technological toxicity they set out to remedy.\",\"PeriodicalId\":377128,\"journal\":{\"name\":\"Morals & Machines\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Morals & Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5771/2747-5174-2022-2-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Morals & Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5771/2747-5174-2022-2-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出,与训练机器学习(ML)系统的数据集相结合的艺术实践可以提供对数字毒性的关怀或治疗性抵抗,并为想象更公平的数字未来提供模型。本文通过关注与这些技术具有批判性和恢复性的药理学作用的艺术品,对ML系统开发中数据挖掘和数据提取的有害做法进行了批评。这三部作品分别是凯特·克劳福德和特雷弗·佩格伦的《ImageNet Roulette》(2019)、马蒂亚斯·Schäfer的《这个人确实存在》(2020)和卡罗琳·辛德斯的《女权主义数据集》(2017年至今)。我们认为,这些作品在处理数据集和机器学习时,将陌生化作为一种关键实践,提供了重要的反叙事和治疗策略,但在某些情况下,也加深和加剧了他们着手补救的技术毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical Dataset and Machine Learning Art.
The paper proposes that artistic practices engaging with datasets on which machine learning (ML) systems are trained can provide caring or curative resistance to digital toxicity and furnish models for imagining more equitable digital futures. The paper provides a critique of harmful practices of data mining and data extraction in ML system development by focusing on artworks that engage pharmacologically, that is critically and restoratively, with these technologies. The three works analyzed are ImageNet Roulette (2019) by Kate Crawford and Trevor Paglen, This Person does Exist (2020) by Mathias Schäfer, and Feminist Dataset (2017-ongoing) by Caroline Sinders. These works, we ague, use defamiliarization as a critical practice when engaging with datasets and ML, providing vital counter-narratives and curative strategies, yet in some cases also deepening and exacerbating the very same technological toxicity they set out to remedy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信