{"title":"异步转置矩阵架构","authors":"J. Tierno, P. Kudva","doi":"10.1109/ICCD.1997.628904","DOIUrl":null,"url":null,"abstract":"The matrix transposition operation is a necessary step in several image/video compression and decompression algorithms, in particular the discrete cosine transform (DCT) and its inverse (IDCT), and some distributed arithmetic applications. These algorithms have to be performed at high data-rates, and with a minimum of power dissipation for portable applications. The authors describe how the clocked solution is usually implemented, and present two new asynchronous architectures that perform matrix transposition. These architectures, one based on two phase signaling, one based on four phase signaling, have better characteristics than the clocked solution in terms of latency and power, at no cost in area or throughput. They discuss the characteristics of these three architectures and evaluate the relative advantages of each one.","PeriodicalId":154864,"journal":{"name":"Proceedings International Conference on Computer Design VLSI in Computers and Processors","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asynchronous transpose-matrix architectures\",\"authors\":\"J. Tierno, P. Kudva\",\"doi\":\"10.1109/ICCD.1997.628904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The matrix transposition operation is a necessary step in several image/video compression and decompression algorithms, in particular the discrete cosine transform (DCT) and its inverse (IDCT), and some distributed arithmetic applications. These algorithms have to be performed at high data-rates, and with a minimum of power dissipation for portable applications. The authors describe how the clocked solution is usually implemented, and present two new asynchronous architectures that perform matrix transposition. These architectures, one based on two phase signaling, one based on four phase signaling, have better characteristics than the clocked solution in terms of latency and power, at no cost in area or throughput. They discuss the characteristics of these three architectures and evaluate the relative advantages of each one.\",\"PeriodicalId\":154864,\"journal\":{\"name\":\"Proceedings International Conference on Computer Design VLSI in Computers and Processors\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Conference on Computer Design VLSI in Computers and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.1997.628904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Computer Design VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.1997.628904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The matrix transposition operation is a necessary step in several image/video compression and decompression algorithms, in particular the discrete cosine transform (DCT) and its inverse (IDCT), and some distributed arithmetic applications. These algorithms have to be performed at high data-rates, and with a minimum of power dissipation for portable applications. The authors describe how the clocked solution is usually implemented, and present two new asynchronous architectures that perform matrix transposition. These architectures, one based on two phase signaling, one based on four phase signaling, have better characteristics than the clocked solution in terms of latency and power, at no cost in area or throughput. They discuss the characteristics of these three architectures and evaluate the relative advantages of each one.