{"title":"脉冲准分子激光量热计腔体的热模拟","authors":"D. Chen, Z. M. Zhang","doi":"10.1115/imece2000-1574","DOIUrl":null,"url":null,"abstract":"\n A simplified finite element model is built to study the thermal response of the 193-nm pulsed-laser calorimeter. The nonequivalence between pulsed-laser heating and electrical heating is estimated to be 0.46% at the thermocouple locations by comparing the calibration factors for average-power laser heating and electrical heating. This study should help the development of calibration and measurement standards in pulsed energy measurements for deep ultraviolet excimer lasers that are important for photolithographic and materials processing applications.","PeriodicalId":221080,"journal":{"name":"Heat Transfer: Volume 5","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Modeling of the Cavity in Pulsed Excimer Laser Calorimeters\",\"authors\":\"D. Chen, Z. M. Zhang\",\"doi\":\"10.1115/imece2000-1574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A simplified finite element model is built to study the thermal response of the 193-nm pulsed-laser calorimeter. The nonequivalence between pulsed-laser heating and electrical heating is estimated to be 0.46% at the thermocouple locations by comparing the calibration factors for average-power laser heating and electrical heating. This study should help the development of calibration and measurement standards in pulsed energy measurements for deep ultraviolet excimer lasers that are important for photolithographic and materials processing applications.\",\"PeriodicalId\":221080,\"journal\":{\"name\":\"Heat Transfer: Volume 5\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 5\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 5","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal Modeling of the Cavity in Pulsed Excimer Laser Calorimeters
A simplified finite element model is built to study the thermal response of the 193-nm pulsed-laser calorimeter. The nonequivalence between pulsed-laser heating and electrical heating is estimated to be 0.46% at the thermocouple locations by comparing the calibration factors for average-power laser heating and electrical heating. This study should help the development of calibration and measurement standards in pulsed energy measurements for deep ultraviolet excimer lasers that are important for photolithographic and materials processing applications.