Peter Munk, Mohammad Shadi Al Hakeem, Raphael Lisicki, Helge Parzyjegla, Jan Richling, Hans-Ulrich Heiß
{"title":"面向COTS多核系统的容错框架","authors":"Peter Munk, Mohammad Shadi Al Hakeem, Raphael Lisicki, Helge Parzyjegla, Jan Richling, Hans-Ulrich Heiß","doi":"10.1109/EDCC.2015.32","DOIUrl":null,"url":null,"abstract":"Commercial-off-the-shelf (COTS) many-core processors offer the performance needed for computational-intensive safety-critical real-time applications such as autonomous driving. However, these consumer-grade many-core processors are increasingly susceptible to faults because of their highly integrated design. In this paper, we present a fault-tolerance framework that eases the usage of COTS many-core processors for safety-critical applications. Our framework employs an adaptable software-based fault-tolerance mechanism that combines N Modular Redundancy (NMR) with a repair process and a rejuvenating round robin voting scheme. A Stochastic Activity Network (SAN) model of the fault-tolerance mechanism allows the framework to adapt the parameters of the mechanism such that a specified target availability is achieved with minimum overhead. Experiments on a cycle-accurate simulator empirically prove the correctness of the SAN model and evaluate the overhead of the framework.","PeriodicalId":138826,"journal":{"name":"2015 11th European Dependable Computing Conference (EDCC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Toward a Fault-Tolerance Framework for COTS Many-Core Systems\",\"authors\":\"Peter Munk, Mohammad Shadi Al Hakeem, Raphael Lisicki, Helge Parzyjegla, Jan Richling, Hans-Ulrich Heiß\",\"doi\":\"10.1109/EDCC.2015.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercial-off-the-shelf (COTS) many-core processors offer the performance needed for computational-intensive safety-critical real-time applications such as autonomous driving. However, these consumer-grade many-core processors are increasingly susceptible to faults because of their highly integrated design. In this paper, we present a fault-tolerance framework that eases the usage of COTS many-core processors for safety-critical applications. Our framework employs an adaptable software-based fault-tolerance mechanism that combines N Modular Redundancy (NMR) with a repair process and a rejuvenating round robin voting scheme. A Stochastic Activity Network (SAN) model of the fault-tolerance mechanism allows the framework to adapt the parameters of the mechanism such that a specified target availability is achieved with minimum overhead. Experiments on a cycle-accurate simulator empirically prove the correctness of the SAN model and evaluate the overhead of the framework.\",\"PeriodicalId\":138826,\"journal\":{\"name\":\"2015 11th European Dependable Computing Conference (EDCC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 11th European Dependable Computing Conference (EDCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDCC.2015.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 11th European Dependable Computing Conference (EDCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDCC.2015.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toward a Fault-Tolerance Framework for COTS Many-Core Systems
Commercial-off-the-shelf (COTS) many-core processors offer the performance needed for computational-intensive safety-critical real-time applications such as autonomous driving. However, these consumer-grade many-core processors are increasingly susceptible to faults because of their highly integrated design. In this paper, we present a fault-tolerance framework that eases the usage of COTS many-core processors for safety-critical applications. Our framework employs an adaptable software-based fault-tolerance mechanism that combines N Modular Redundancy (NMR) with a repair process and a rejuvenating round robin voting scheme. A Stochastic Activity Network (SAN) model of the fault-tolerance mechanism allows the framework to adapt the parameters of the mechanism such that a specified target availability is achieved with minimum overhead. Experiments on a cycle-accurate simulator empirically prove the correctness of the SAN model and evaluate the overhead of the framework.