动态系统概率模型的粒子滤波优化工具

П.В. Полухин
{"title":"动态系统概率模型的粒子滤波优化工具","authors":"П.В. Полухин","doi":"10.36622/vstu.2021.86.4.001","DOIUrl":null,"url":null,"abstract":"В работе предложены математические инструменты на основе достаточных статистик и декомпозиции выборок в сочетании с алгоритмами распределенных вычислений, позволяющие существенно повысить эффективность процедуры фильтрации.\n Filtering algorithms are used to assess the state of dynamic systems when solving various practical problems, such as voice synthesis and determining the geo-position and monitoring the movement of objects. In the case of complex hierarchical dynamic systems with a large number of time slices, the process of calculating probabilistic characteristics becomes very time-consuming due to the need to generate a large number of samples. The essence of optimization is to reduce the number of samples generated by the filter, increase their consistency and speed up computational operations. The paper offers mathematical tools based on sufficient statistics and sample decomposition in combination with distributed computing algorithms that can significantly improve the efficiency of the filtering procedure.","PeriodicalId":331043,"journal":{"name":"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PARTICLE FILTER OPTIMIZATION TOOLS FOR DYNAMICAL SYSTEMS PROBABILISTIC MODELS\",\"authors\":\"П.В. Полухин\",\"doi\":\"10.36622/vstu.2021.86.4.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"В работе предложены математические инструменты на основе достаточных статистик и декомпозиции выборок в сочетании с алгоритмами распределенных вычислений, позволяющие существенно повысить эффективность процедуры фильтрации.\\n Filtering algorithms are used to assess the state of dynamic systems when solving various practical problems, such as voice synthesis and determining the geo-position and monitoring the movement of objects. In the case of complex hierarchical dynamic systems with a large number of time slices, the process of calculating probabilistic characteristics becomes very time-consuming due to the need to generate a large number of samples. The essence of optimization is to reduce the number of samples generated by the filter, increase their consistency and speed up computational operations. The paper offers mathematical tools based on sufficient statistics and sample decomposition in combination with distributed computing algorithms that can significantly improve the efficiency of the filtering procedure.\",\"PeriodicalId\":331043,\"journal\":{\"name\":\"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36622/vstu.2021.86.4.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36622/vstu.2021.86.4.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Вработе предложены математические инструменты на основе достаточных статистик и декомпозиции выборок в сочетании с алгоритмами распределенных вычислений、在解决语音合成、确定地理位置和监测物体运动等各种实际问题时,过滤算法被用来评估动态系统的状态。对于具有大量时间片的复杂分层动态系统,由于需要生成大量样本,计算概率特征的过程变得非常耗时。优化的本质是减少滤波器生成的样本数量,提高样本的一致性,加快计算速度。本文提供了基于充分统计和样本分解的数学工具,结合分布式计算算法,可显著提高过滤程序的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PARTICLE FILTER OPTIMIZATION TOOLS FOR DYNAMICAL SYSTEMS PROBABILISTIC MODELS
В работе предложены математические инструменты на основе достаточных статистик и декомпозиции выборок в сочетании с алгоритмами распределенных вычислений, позволяющие существенно повысить эффективность процедуры фильтрации. Filtering algorithms are used to assess the state of dynamic systems when solving various practical problems, such as voice synthesis and determining the geo-position and monitoring the movement of objects. In the case of complex hierarchical dynamic systems with a large number of time slices, the process of calculating probabilistic characteristics becomes very time-consuming due to the need to generate a large number of samples. The essence of optimization is to reduce the number of samples generated by the filter, increase their consistency and speed up computational operations. The paper offers mathematical tools based on sufficient statistics and sample decomposition in combination with distributed computing algorithms that can significantly improve the efficiency of the filtering procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信