两圈和三圈的紫菜桌

Patrick Dehornoy, V. Lebed
{"title":"两圈和三圈的紫菜桌","authors":"Patrick Dehornoy, V. Lebed","doi":"10.1142/S0218216514500175","DOIUrl":null,"url":null,"abstract":"We determine all 2- and 3-cocycles for Laver tables, an infinite sequence of finite structures obeying the left-selfdistributivity law; in particular, we describe simple explicit bases. This provides a number of new positive braid invariants and paves the way for further potential topological applications. Incidentally, we establish and study a partial ordering on Laver tables given by the right-divisibility relation.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Two- and three-cocycles for Laver tables\",\"authors\":\"Patrick Dehornoy, V. Lebed\",\"doi\":\"10.1142/S0218216514500175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine all 2- and 3-cocycles for Laver tables, an infinite sequence of finite structures obeying the left-selfdistributivity law; in particular, we describe simple explicit bases. This provides a number of new positive braid invariants and paves the way for further potential topological applications. Incidentally, we establish and study a partial ordering on Laver tables given by the right-divisibility relation.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218216514500175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218216514500175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们确定了遵从左自分配律的有限结构无穷序列Laver表的所有2环和3环;特别地,我们描述了简单的显式基。这提供了许多新的正辫不变量,并为进一步潜在的拓扑应用铺平了道路。同时,我们建立并研究了由右可除关系给出的Laver表上的一个偏序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two- and three-cocycles for Laver tables
We determine all 2- and 3-cocycles for Laver tables, an infinite sequence of finite structures obeying the left-selfdistributivity law; in particular, we describe simple explicit bases. This provides a number of new positive braid invariants and paves the way for further potential topological applications. Incidentally, we establish and study a partial ordering on Laver tables given by the right-divisibility relation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信