{"title":"两圈和三圈的紫菜桌","authors":"Patrick Dehornoy, V. Lebed","doi":"10.1142/S0218216514500175","DOIUrl":null,"url":null,"abstract":"We determine all 2- and 3-cocycles for Laver tables, an infinite sequence of finite structures obeying the left-selfdistributivity law; in particular, we describe simple explicit bases. This provides a number of new positive braid invariants and paves the way for further potential topological applications. Incidentally, we establish and study a partial ordering on Laver tables given by the right-divisibility relation.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Two- and three-cocycles for Laver tables\",\"authors\":\"Patrick Dehornoy, V. Lebed\",\"doi\":\"10.1142/S0218216514500175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine all 2- and 3-cocycles for Laver tables, an infinite sequence of finite structures obeying the left-selfdistributivity law; in particular, we describe simple explicit bases. This provides a number of new positive braid invariants and paves the way for further potential topological applications. Incidentally, we establish and study a partial ordering on Laver tables given by the right-divisibility relation.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218216514500175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218216514500175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We determine all 2- and 3-cocycles for Laver tables, an infinite sequence of finite structures obeying the left-selfdistributivity law; in particular, we describe simple explicit bases. This provides a number of new positive braid invariants and paves the way for further potential topological applications. Incidentally, we establish and study a partial ordering on Laver tables given by the right-divisibility relation.