不确定数据的状态空间估计:有限和无限视界结果

A. H. Sayed
{"title":"不确定数据的状态空间估计:有限和无限视界结果","authors":"A. H. Sayed","doi":"10.1109/CDC.2001.914664","DOIUrl":null,"url":null,"abstract":"Develops a robust estimation procedure for state-space models with parametric uncertainties. Compared with existing robust filters, the proposed filter performs data regularization rather than de-regularization. It is shown that, under certain stabilizability and detectability conditions, the steady-state filter is stable and that, for quadratically-stable models, it guarantees a bounded error variance.","PeriodicalId":217237,"journal":{"name":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State-space estimation with uncertain data: finite and infinite-horizon results\",\"authors\":\"A. H. Sayed\",\"doi\":\"10.1109/CDC.2001.914664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Develops a robust estimation procedure for state-space models with parametric uncertainties. Compared with existing robust filters, the proposed filter performs data regularization rather than de-regularization. It is shown that, under certain stabilizability and detectability conditions, the steady-state filter is stable and that, for quadratically-stable models, it guarantees a bounded error variance.\",\"PeriodicalId\":217237,\"journal\":{\"name\":\"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2001.914664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.914664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为具有参数不确定性的状态空间模型开发了一种鲁棒估计程序。与现有的鲁棒滤波器相比,该滤波器对数据进行正则化而不是反正则化。结果表明,在一定的稳定性和可检测性条件下,稳态滤波器是稳定的,对于二次稳定模型,它保证误差方差有界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State-space estimation with uncertain data: finite and infinite-horizon results
Develops a robust estimation procedure for state-space models with parametric uncertainties. Compared with existing robust filters, the proposed filter performs data regularization rather than de-regularization. It is shown that, under certain stabilizability and detectability conditions, the steady-state filter is stable and that, for quadratically-stable models, it guarantees a bounded error variance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信