层次数据的多维k -匿名模型

Xiaojun Ye, Lei Jin, Bin Li
{"title":"层次数据的多维k -匿名模型","authors":"Xiaojun Ye, Lei Jin, Bin Li","doi":"10.1109/ISECS.2008.113","DOIUrl":null,"url":null,"abstract":"For improving the usability of the anonymous result, it is important to comply with the hierarchical structure when generalizing quasi-identifying attributes with hierarchical characteristics. We propose an unrestricted multi-dimensional anonymization model which combines global recoding and local recoding methods. The bottom-up anonymization algorithm with the minimal coverage subgraph constraint and the anonymization metric are proposed. The experiment results justify the effectiveness and scalability of this model.","PeriodicalId":144075,"journal":{"name":"2008 International Symposium on Electronic Commerce and Security","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Multi-Dimensional K-Anonymity Model for Hierarchical Data\",\"authors\":\"Xiaojun Ye, Lei Jin, Bin Li\",\"doi\":\"10.1109/ISECS.2008.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For improving the usability of the anonymous result, it is important to comply with the hierarchical structure when generalizing quasi-identifying attributes with hierarchical characteristics. We propose an unrestricted multi-dimensional anonymization model which combines global recoding and local recoding methods. The bottom-up anonymization algorithm with the minimal coverage subgraph constraint and the anonymization metric are proposed. The experiment results justify the effectiveness and scalability of this model.\",\"PeriodicalId\":144075,\"journal\":{\"name\":\"2008 International Symposium on Electronic Commerce and Security\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Electronic Commerce and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISECS.2008.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Electronic Commerce and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISECS.2008.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

为了提高匿名结果的可用性,在泛化具有层次特征的准识别属性时,遵循层次结构是非常重要的。提出了一种结合全局编码和局部编码方法的不受限制的多维匿名化模型。提出了具有最小覆盖子图约束和匿名度量的自底向上匿名算法。实验结果证明了该模型的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Dimensional K-Anonymity Model for Hierarchical Data
For improving the usability of the anonymous result, it is important to comply with the hierarchical structure when generalizing quasi-identifying attributes with hierarchical characteristics. We propose an unrestricted multi-dimensional anonymization model which combines global recoding and local recoding methods. The bottom-up anonymization algorithm with the minimal coverage subgraph constraint and the anonymization metric are proposed. The experiment results justify the effectiveness and scalability of this model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信