基于Michaelis-Menten动力学的基因调控网络推断

Ahammed Sherief Kizhakkethil Youseph, M. Chetty, G. Karmakar
{"title":"基于Michaelis-Menten动力学的基因调控网络推断","authors":"Ahammed Sherief Kizhakkethil Youseph, M. Chetty, G. Karmakar","doi":"10.1109/CEC.2015.7257181","DOIUrl":null,"url":null,"abstract":"A gene regulatory network (GRN) represents a collection of genes, connected via regulatory interactions. Reverse engineering GRNs is a challenging problem in systems biology. Various models have been proposed for modeling GRNs. However, many of these models lack the capability to explain the molecular mechanisms underlying the biological process. Michaelis-Menten kinetics can be used to model the biomolecular mechanisms and is a widely used non-linear approach to represent biochemical systems. However, the model in its current form is not suitable for reverse engineering biological systems. In this paper, based on Michaelis-Menten kinetics, we develop a new model to reverse engineer GRNs. The parameter estimation is formulated as an optimization problem which is solved by adapting trigonometric differential evolution (TDE), a variant of differential evolution (DE). The model is applied for reconstructing both in silico and in vivo networks. The results are promising and as the model is fully biologically relevant, it provides a new perspective for accurate GRN inference.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Gene regulatory network inference using Michaelis-Menten kinetics\",\"authors\":\"Ahammed Sherief Kizhakkethil Youseph, M. Chetty, G. Karmakar\",\"doi\":\"10.1109/CEC.2015.7257181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A gene regulatory network (GRN) represents a collection of genes, connected via regulatory interactions. Reverse engineering GRNs is a challenging problem in systems biology. Various models have been proposed for modeling GRNs. However, many of these models lack the capability to explain the molecular mechanisms underlying the biological process. Michaelis-Menten kinetics can be used to model the biomolecular mechanisms and is a widely used non-linear approach to represent biochemical systems. However, the model in its current form is not suitable for reverse engineering biological systems. In this paper, based on Michaelis-Menten kinetics, we develop a new model to reverse engineer GRNs. The parameter estimation is formulated as an optimization problem which is solved by adapting trigonometric differential evolution (TDE), a variant of differential evolution (DE). The model is applied for reconstructing both in silico and in vivo networks. The results are promising and as the model is fully biologically relevant, it provides a new perspective for accurate GRN inference.\",\"PeriodicalId\":403666,\"journal\":{\"name\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2015.7257181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基因调控网络(GRN)是基因的集合,通过调控相互作用连接在一起。逆向工程是系统生物学中的一个具有挑战性的问题。人们提出了各种模型来模拟grn。然而,许多这些模型缺乏解释生物过程背后的分子机制的能力。Michaelis-Menten动力学可以用来模拟生物分子机制,是一种广泛使用的表征生物化学系统的非线性方法。然而,该模型目前的形式并不适用于生物系统的逆向工程。本文基于Michaelis-Menten动力学,建立了一种新的grn逆向工程模型。将参数估计表述为一个优化问题,并采用微分进化的一种变体——自适应三角微分进化(TDE)进行求解。该模型可用于重建计算机网络和体内网络。结果是有希望的,并且由于该模型具有完全的生物学相关性,它为精确的GRN推断提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene regulatory network inference using Michaelis-Menten kinetics
A gene regulatory network (GRN) represents a collection of genes, connected via regulatory interactions. Reverse engineering GRNs is a challenging problem in systems biology. Various models have been proposed for modeling GRNs. However, many of these models lack the capability to explain the molecular mechanisms underlying the biological process. Michaelis-Menten kinetics can be used to model the biomolecular mechanisms and is a widely used non-linear approach to represent biochemical systems. However, the model in its current form is not suitable for reverse engineering biological systems. In this paper, based on Michaelis-Menten kinetics, we develop a new model to reverse engineer GRNs. The parameter estimation is formulated as an optimization problem which is solved by adapting trigonometric differential evolution (TDE), a variant of differential evolution (DE). The model is applied for reconstructing both in silico and in vivo networks. The results are promising and as the model is fully biologically relevant, it provides a new perspective for accurate GRN inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信