使用微分同构曲面配准生成统计形状模型

J. Wu, G. Li, H. Lu, H. Kim, P. Ogunbona
{"title":"使用微分同构曲面配准生成统计形状模型","authors":"J. Wu, G. Li, H. Lu, H. Kim, P. Ogunbona","doi":"10.1145/3133793.3133796","DOIUrl":null,"url":null,"abstract":"Statistical shape modelling is an efficient and robust method for medical image segmentation in computer-aided diagnosis. The key step in building a statistical shape model is to find corresponding landmarks in each instance of a training set. In this paper, a novel landmark correspondence estimation method that uses edge collapse surface simplification and the sphere registration is proposed. All the landmarks are selected and transformed by spherical conformal mapping from the instances of the training set and the associated correspondence are automatically found on the spheres. We applied our method on 21 cases of 3-D right lung shapes. The results of image segmentation experiment indicate that our method has a positive influence on the accuracy of segmentation result.","PeriodicalId":217183,"journal":{"name":"Proceedings of the 2nd International Conference on Biomedical Signal and Image Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical Shape Model Generation Using Diffeomorphic Surface Registration\",\"authors\":\"J. Wu, G. Li, H. Lu, H. Kim, P. Ogunbona\",\"doi\":\"10.1145/3133793.3133796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical shape modelling is an efficient and robust method for medical image segmentation in computer-aided diagnosis. The key step in building a statistical shape model is to find corresponding landmarks in each instance of a training set. In this paper, a novel landmark correspondence estimation method that uses edge collapse surface simplification and the sphere registration is proposed. All the landmarks are selected and transformed by spherical conformal mapping from the instances of the training set and the associated correspondence are automatically found on the spheres. We applied our method on 21 cases of 3-D right lung shapes. The results of image segmentation experiment indicate that our method has a positive influence on the accuracy of segmentation result.\",\"PeriodicalId\":217183,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Biomedical Signal and Image Processing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Biomedical Signal and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3133793.3133796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Biomedical Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3133793.3133796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

统计形状建模是计算机辅助诊断中医学图像分割的一种高效、鲁棒的方法。建立统计形状模型的关键步骤是在训练集的每个实例中找到相应的地标。提出了一种基于边缘塌缩曲面简化和球面配准的地标对应估计方法。从训练集的实例中选择所有的地标并通过球面共角映射进行变换,在球体上自动找到相应的对应关系。我们将该方法应用于21例右肺三维形态。图像分割实验结果表明,该方法对分割结果的准确性有积极的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Shape Model Generation Using Diffeomorphic Surface Registration
Statistical shape modelling is an efficient and robust method for medical image segmentation in computer-aided diagnosis. The key step in building a statistical shape model is to find corresponding landmarks in each instance of a training set. In this paper, a novel landmark correspondence estimation method that uses edge collapse surface simplification and the sphere registration is proposed. All the landmarks are selected and transformed by spherical conformal mapping from the instances of the training set and the associated correspondence are automatically found on the spheres. We applied our method on 21 cases of 3-D right lung shapes. The results of image segmentation experiment indicate that our method has a positive influence on the accuracy of segmentation result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信