{"title":"机器人辅助被动手腕和前臂康复:外骨骼的设计和实现","authors":"M. E. Kütük, M. T. Das, L. Dülger","doi":"10.1109/TIPTEKNO50054.2020.9299251","DOIUrl":null,"url":null,"abstract":"An exoskeleton for human wrist and forearm rehabilitation has been designed and manufactured. Considering the torque values required for daily life activities, a structural analysis study has been presented. It has three degrees of freedom (DOF) which must be fitted to real human wrist and forearm. Anatomical motion ranges of human limbs have been taken into account during design. IMU has been used in order to get the kinematic values of the limbs and to evaluate the performance level of the therapy. Adapting a six DOF Denso robot to rehabilitation has been completed and experiments have been performed.","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robotic Assisted Passive Wrist and Forearm Rehabilitation: Design of an Exoskeleton and Implementation\",\"authors\":\"M. E. Kütük, M. T. Das, L. Dülger\",\"doi\":\"10.1109/TIPTEKNO50054.2020.9299251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An exoskeleton for human wrist and forearm rehabilitation has been designed and manufactured. Considering the torque values required for daily life activities, a structural analysis study has been presented. It has three degrees of freedom (DOF) which must be fitted to real human wrist and forearm. Anatomical motion ranges of human limbs have been taken into account during design. IMU has been used in order to get the kinematic values of the limbs and to evaluate the performance level of the therapy. Adapting a six DOF Denso robot to rehabilitation has been completed and experiments have been performed.\",\"PeriodicalId\":426945,\"journal\":{\"name\":\"2020 Medical Technologies Congress (TIPTEKNO)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Medical Technologies Congress (TIPTEKNO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIPTEKNO50054.2020.9299251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robotic Assisted Passive Wrist and Forearm Rehabilitation: Design of an Exoskeleton and Implementation
An exoskeleton for human wrist and forearm rehabilitation has been designed and manufactured. Considering the torque values required for daily life activities, a structural analysis study has been presented. It has three degrees of freedom (DOF) which must be fitted to real human wrist and forearm. Anatomical motion ranges of human limbs have been taken into account during design. IMU has been used in order to get the kinematic values of the limbs and to evaluate the performance level of the therapy. Adapting a six DOF Denso robot to rehabilitation has been completed and experiments have been performed.