{"title":"基于非欧距离的扩散张量相似度改进脑纤维跟踪","authors":"Lei Ye, E. Hunsicker, Baihua Li, Diwei Zhou","doi":"10.1109/IST48021.2019.9010570","DOIUrl":null,"url":null,"abstract":"Fibre tracking is a non-invasive technique based on Diffusion Tensor Imaging (DTI) that provides useful information about biological anatomy and connectivity. In this paper, we propose a new fibre tracking algorithm, named TAS (Tracking by Angle and Similarity), which is able to overcome the shortfalls of existing algorithms by considering not only the main diffusion directions, but also the similarity of diffusion tensors using non-Euclidean distances. Quantitative comparison is carried out through a collection of simulation experiments using statistics of diffusion tensor anisotropy and volume, and tracking errors. Fibre tracking in Corpus Callosum from a healthy human brain dataset is presented.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain Fibre Tracking Improved by Diffusion Tensor Similarity using Non-Euclidean Distances\",\"authors\":\"Lei Ye, E. Hunsicker, Baihua Li, Diwei Zhou\",\"doi\":\"10.1109/IST48021.2019.9010570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fibre tracking is a non-invasive technique based on Diffusion Tensor Imaging (DTI) that provides useful information about biological anatomy and connectivity. In this paper, we propose a new fibre tracking algorithm, named TAS (Tracking by Angle and Similarity), which is able to overcome the shortfalls of existing algorithms by considering not only the main diffusion directions, but also the similarity of diffusion tensors using non-Euclidean distances. Quantitative comparison is carried out through a collection of simulation experiments using statistics of diffusion tensor anisotropy and volume, and tracking errors. Fibre tracking in Corpus Callosum from a healthy human brain dataset is presented.\",\"PeriodicalId\":117219,\"journal\":{\"name\":\"2019 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST48021.2019.9010570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
纤维跟踪是一种基于弥散张量成像(DTI)的非侵入性技术,可提供有关生物解剖和连接的有用信息。在本文中,我们提出了一种新的光纤跟踪算法,称为TAS (tracking by Angle and Similarity),它不仅考虑了主要的扩散方向,而且考虑了使用非欧几里得距离的扩散张量的相似性,从而克服了现有算法的不足。通过统计扩散张量的各向异性和体积,以及跟踪误差,收集仿真实验进行定量比较。介绍了健康人脑数据集胼胝体的纤维跟踪。
Brain Fibre Tracking Improved by Diffusion Tensor Similarity using Non-Euclidean Distances
Fibre tracking is a non-invasive technique based on Diffusion Tensor Imaging (DTI) that provides useful information about biological anatomy and connectivity. In this paper, we propose a new fibre tracking algorithm, named TAS (Tracking by Angle and Similarity), which is able to overcome the shortfalls of existing algorithms by considering not only the main diffusion directions, but also the similarity of diffusion tensors using non-Euclidean distances. Quantitative comparison is carried out through a collection of simulation experiments using statistics of diffusion tensor anisotropy and volume, and tracking errors. Fibre tracking in Corpus Callosum from a healthy human brain dataset is presented.