加性高斯白噪声水平估计的群体智能

Heri Prasetyo, U. Salamah
{"title":"加性高斯白噪声水平估计的群体智能","authors":"Heri Prasetyo, U. Salamah","doi":"10.5391/IJFIS.2020.20.3.169","DOIUrl":null,"url":null,"abstract":"This paper presents a simple technique for estimating the noise levels in noisy images corrupted by additive white Gaussian noise. The proposed technique modifies the existing singular-value-decomposition-based noise level estimation method. The proposed method calculates the sum of trailing singular values to infer noise levels. Particle swarm optimization and its variants can be used compute the optimal scalar value for the proposed noise level estimation method over a set of training images. As discussed in the experimental section, the proposed method outperforms existing schemes on noise level estimation tasks. Additionally, the estimated noise obtained from the proposed method can be used to improve the quality of denoised images.","PeriodicalId":354250,"journal":{"name":"Int. J. Fuzzy Log. Intell. Syst.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Swarm Intelligence for Additive White Gaussian Noise Level Estimation\",\"authors\":\"Heri Prasetyo, U. Salamah\",\"doi\":\"10.5391/IJFIS.2020.20.3.169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a simple technique for estimating the noise levels in noisy images corrupted by additive white Gaussian noise. The proposed technique modifies the existing singular-value-decomposition-based noise level estimation method. The proposed method calculates the sum of trailing singular values to infer noise levels. Particle swarm optimization and its variants can be used compute the optimal scalar value for the proposed noise level estimation method over a set of training images. As discussed in the experimental section, the proposed method outperforms existing schemes on noise level estimation tasks. Additionally, the estimated noise obtained from the proposed method can be used to improve the quality of denoised images.\",\"PeriodicalId\":354250,\"journal\":{\"name\":\"Int. J. Fuzzy Log. Intell. Syst.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Fuzzy Log. Intell. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5391/IJFIS.2020.20.3.169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Log. Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5391/IJFIS.2020.20.3.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种简单的估计被加性高斯白噪声破坏的噪声图像的噪声级的方法。该方法对现有的基于奇异值分解的噪声级估计方法进行了改进。该方法通过计算尾随奇异值的和来推断噪声水平。粒子群算法及其变体可以在一组训练图像上计算噪声水平估计方法的最优标量值。正如在实验部分所讨论的,所提出的方法在噪声电平估计任务上优于现有的方案。此外,该方法得到的估计噪声可用于提高去噪图像的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Swarm Intelligence for Additive White Gaussian Noise Level Estimation
This paper presents a simple technique for estimating the noise levels in noisy images corrupted by additive white Gaussian noise. The proposed technique modifies the existing singular-value-decomposition-based noise level estimation method. The proposed method calculates the sum of trailing singular values to infer noise levels. Particle swarm optimization and its variants can be used compute the optimal scalar value for the proposed noise level estimation method over a set of training images. As discussed in the experimental section, the proposed method outperforms existing schemes on noise level estimation tasks. Additionally, the estimated noise obtained from the proposed method can be used to improve the quality of denoised images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信