中性拓扑空间中分离公理的探讨

A. Acikgoz, F. Esenbel
{"title":"中性拓扑空间中分离公理的探讨","authors":"A. Acikgoz, F. Esenbel","doi":"10.1063/5.0042370","DOIUrl":null,"url":null,"abstract":"This study is dedicated to make an attempt to define different types of separation axioms in neutrosophic topological spaces. The relationships among them are shown with a diagram and counterexamples. We also introduce some new notions, such as neutrosophic quasi-coincidence, neutrosophic q-neighborhood, neurosophic cluster point, and give a new definition for neutrosophic function.","PeriodicalId":282720,"journal":{"name":"FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A look on separation axioms in neutrosophic topological spaces\",\"authors\":\"A. Acikgoz, F. Esenbel\",\"doi\":\"10.1063/5.0042370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is dedicated to make an attempt to define different types of separation axioms in neutrosophic topological spaces. The relationships among them are shown with a diagram and counterexamples. We also introduce some new notions, such as neutrosophic quasi-coincidence, neutrosophic q-neighborhood, neurosophic cluster point, and give a new definition for neutrosophic function.\",\"PeriodicalId\":282720,\"journal\":{\"name\":\"FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0042370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0042370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究致力于在中性拓扑空间中定义不同类型的分离公理。用图表和反例说明了它们之间的关系。引入了嗜中性拟重合、嗜中性q邻域、嗜中性聚类点等新概念,并给出了嗜中性函数的新定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A look on separation axioms in neutrosophic topological spaces
This study is dedicated to make an attempt to define different types of separation axioms in neutrosophic topological spaces. The relationships among them are shown with a diagram and counterexamples. We also introduce some new notions, such as neutrosophic quasi-coincidence, neutrosophic q-neighborhood, neurosophic cluster point, and give a new definition for neutrosophic function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信