{"title":"顺序乐观并行仿真中管理暂挂事件的多层优先级队列和两层阶梯队列","authors":"Julius Higiro, Meseret Gebre, D. Rao","doi":"10.1145/3064911.3064921","DOIUrl":null,"url":null,"abstract":"The choice of data structure for managing and processing pending events in timestamp priority order plays a critical role in achieving good performance of sequential and parallel Discrete Event Simulation (DES). Accordingly, we propose and evaluate the effectiveness of our novel multi-tiered (2 and 3 tier) data structures and our 2-tier Ladder Queue, for both sequential and optimistic parallel simulations, on distributed memory platforms. Our assessments use (a fine-tuned version of) the Ladder Queue, which has shown to outperform many other data structures for DES. The experimental results based on 2,500 configurations of PHOLD benchmark show that our 3-tier heap and 2-tier ladder queue outperform the Ladder Queue by 10% to 50% in simulations, particularly those with higher concurrency per Logical Process (LP), in both sequential and Time Warp synchronized parallel simulations.","PeriodicalId":341026,"journal":{"name":"Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Multi-tier Priority Queues and 2-tier Ladder Queue for Managing Pending Events in Sequential and Optimistic Parallel Simulations\",\"authors\":\"Julius Higiro, Meseret Gebre, D. Rao\",\"doi\":\"10.1145/3064911.3064921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The choice of data structure for managing and processing pending events in timestamp priority order plays a critical role in achieving good performance of sequential and parallel Discrete Event Simulation (DES). Accordingly, we propose and evaluate the effectiveness of our novel multi-tiered (2 and 3 tier) data structures and our 2-tier Ladder Queue, for both sequential and optimistic parallel simulations, on distributed memory platforms. Our assessments use (a fine-tuned version of) the Ladder Queue, which has shown to outperform many other data structures for DES. The experimental results based on 2,500 configurations of PHOLD benchmark show that our 3-tier heap and 2-tier ladder queue outperform the Ladder Queue by 10% to 50% in simulations, particularly those with higher concurrency per Logical Process (LP), in both sequential and Time Warp synchronized parallel simulations.\",\"PeriodicalId\":341026,\"journal\":{\"name\":\"Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3064911.3064921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3064911.3064921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-tier Priority Queues and 2-tier Ladder Queue for Managing Pending Events in Sequential and Optimistic Parallel Simulations
The choice of data structure for managing and processing pending events in timestamp priority order plays a critical role in achieving good performance of sequential and parallel Discrete Event Simulation (DES). Accordingly, we propose and evaluate the effectiveness of our novel multi-tiered (2 and 3 tier) data structures and our 2-tier Ladder Queue, for both sequential and optimistic parallel simulations, on distributed memory platforms. Our assessments use (a fine-tuned version of) the Ladder Queue, which has shown to outperform many other data structures for DES. The experimental results based on 2,500 configurations of PHOLD benchmark show that our 3-tier heap and 2-tier ladder queue outperform the Ladder Queue by 10% to 50% in simulations, particularly those with higher concurrency per Logical Process (LP), in both sequential and Time Warp synchronized parallel simulations.