基于逆运动学和时间卷积网络的VR序列姿态分析

David C. Jeong, Jackie Jingyi Xu, L. Miller
{"title":"基于逆运动学和时间卷积网络的VR序列姿态分析","authors":"David C. Jeong, Jackie Jingyi Xu, L. Miller","doi":"10.1109/AIVR50618.2020.00056","DOIUrl":null,"url":null,"abstract":"Drawing from a recent call to advance generalizability and causal inference in psychological science using contextually representative research designs [1], we introduce a conceptual framework that integrates techniques in machine perception of poses with VR-driven inverse kinematic character animation, leveraging the Unity game engine to mediate between the human user and the machine learner. This Computational Virtual Reality (C-VR) system contains the following components: a) Human motion capture (VR), b) Human to avatar character animation (inverse kinematics), c) character animation recordings (virtual cameras), d) avatar pose detection (OpenPose), d) avatar pose classification (SVM), and e) sequential avatar moving pose analyses (TCN). By leveraging the precision in representation afforded in virtual environments and agents and the precision in perception afforded in computer vision and machine learning in a unified system, we may take steps towards understanding a wider range of human complexity.","PeriodicalId":348199,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Inverse Kinematics and Temporal Convolutional Networks for Sequential Pose Analysis in VR\",\"authors\":\"David C. Jeong, Jackie Jingyi Xu, L. Miller\",\"doi\":\"10.1109/AIVR50618.2020.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drawing from a recent call to advance generalizability and causal inference in psychological science using contextually representative research designs [1], we introduce a conceptual framework that integrates techniques in machine perception of poses with VR-driven inverse kinematic character animation, leveraging the Unity game engine to mediate between the human user and the machine learner. This Computational Virtual Reality (C-VR) system contains the following components: a) Human motion capture (VR), b) Human to avatar character animation (inverse kinematics), c) character animation recordings (virtual cameras), d) avatar pose detection (OpenPose), d) avatar pose classification (SVM), and e) sequential avatar moving pose analyses (TCN). By leveraging the precision in representation afforded in virtual environments and agents and the precision in perception afforded in computer vision and machine learning in a unified system, we may take steps towards understanding a wider range of human complexity.\",\"PeriodicalId\":348199,\"journal\":{\"name\":\"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIVR50618.2020.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR50618.2020.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

根据最近使用上下文代表性研究设计来推进心理科学的通用性和因果推理的呼吁[1],我们引入了一个概念框架,该框架将机器感知姿势的技术与vr驱动的逆运动学角色动画相结合,利用Unity游戏引擎在人类用户和机器学习者之间进行调解。该计算虚拟现实(c -VR)系统包含以下组件:a)人体动作捕捉(VR), b)人到化身的角色动画(逆运动学),c)角色动画记录(虚拟摄像机),d)化身姿态检测(OpenPose), d)化身姿态分类(SVM), e)顺序化身移动姿态分析(TCN)。通过在一个统一的系统中利用虚拟环境和代理中提供的表示精度以及计算机视觉和机器学习中提供的感知精度,我们可能会朝着理解更广泛的人类复杂性迈出一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Kinematics and Temporal Convolutional Networks for Sequential Pose Analysis in VR
Drawing from a recent call to advance generalizability and causal inference in psychological science using contextually representative research designs [1], we introduce a conceptual framework that integrates techniques in machine perception of poses with VR-driven inverse kinematic character animation, leveraging the Unity game engine to mediate between the human user and the machine learner. This Computational Virtual Reality (C-VR) system contains the following components: a) Human motion capture (VR), b) Human to avatar character animation (inverse kinematics), c) character animation recordings (virtual cameras), d) avatar pose detection (OpenPose), d) avatar pose classification (SVM), and e) sequential avatar moving pose analyses (TCN). By leveraging the precision in representation afforded in virtual environments and agents and the precision in perception afforded in computer vision and machine learning in a unified system, we may take steps towards understanding a wider range of human complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信