{"title":"非结构化三维点云中车辆部件的分类","authors":"Allan Zelener, Philippos Mordohai, I. Stamos","doi":"10.1109/3DV.2014.58","DOIUrl":null,"url":null,"abstract":"Unprecedented amounts of 3D data can be acquired in urban environments, but their use for scene understanding is challenging due to varying data resolution and variability of objects in the same class. An additional challenge is due to the nature of the point clouds themselves, since they lack detailed geometric or semantic information that would aid scene understanding. In this paper we present a general algorithm for segmenting and jointly classifying object parts and the object itself. Our pipeline consists of local feature extraction, robust RANSAC part segmentation, part-level feature extraction, a structured model for parts in objects, and classification using state-of-the-art classifiers. We have tested this pipeline in a very challenging dataset that consists of real world scans of vehicles. Our contributions include the development of a segmentation and classification pipeline for objects and their parts, and a method for segmentation that is robust to the complexity of unstructured 3D points clouds, as well as a part ordering strategy for the sequential structured model and a joint feature representation between object parts.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Classification of Vehicle Parts in Unstructured 3D Point Clouds\",\"authors\":\"Allan Zelener, Philippos Mordohai, I. Stamos\",\"doi\":\"10.1109/3DV.2014.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unprecedented amounts of 3D data can be acquired in urban environments, but their use for scene understanding is challenging due to varying data resolution and variability of objects in the same class. An additional challenge is due to the nature of the point clouds themselves, since they lack detailed geometric or semantic information that would aid scene understanding. In this paper we present a general algorithm for segmenting and jointly classifying object parts and the object itself. Our pipeline consists of local feature extraction, robust RANSAC part segmentation, part-level feature extraction, a structured model for parts in objects, and classification using state-of-the-art classifiers. We have tested this pipeline in a very challenging dataset that consists of real world scans of vehicles. Our contributions include the development of a segmentation and classification pipeline for objects and their parts, and a method for segmentation that is robust to the complexity of unstructured 3D points clouds, as well as a part ordering strategy for the sequential structured model and a joint feature representation between object parts.\",\"PeriodicalId\":275516,\"journal\":{\"name\":\"2014 2nd International Conference on 3D Vision\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on 3D Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2014.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of Vehicle Parts in Unstructured 3D Point Clouds
Unprecedented amounts of 3D data can be acquired in urban environments, but their use for scene understanding is challenging due to varying data resolution and variability of objects in the same class. An additional challenge is due to the nature of the point clouds themselves, since they lack detailed geometric or semantic information that would aid scene understanding. In this paper we present a general algorithm for segmenting and jointly classifying object parts and the object itself. Our pipeline consists of local feature extraction, robust RANSAC part segmentation, part-level feature extraction, a structured model for parts in objects, and classification using state-of-the-art classifiers. We have tested this pipeline in a very challenging dataset that consists of real world scans of vehicles. Our contributions include the development of a segmentation and classification pipeline for objects and their parts, and a method for segmentation that is robust to the complexity of unstructured 3D points clouds, as well as a part ordering strategy for the sequential structured model and a joint feature representation between object parts.