张量链分解与函数插值

P. Tichavský, A. Phan
{"title":"张量链分解与函数插值","authors":"P. Tichavský, A. Phan","doi":"10.1109/SSP53291.2023.10207942","DOIUrl":null,"url":null,"abstract":"Tensor Chain (TC) decomposition represents a given tensor as a chain (circle) of order-3 tensors (wagons) connected through tensor contractions. In this paper, we show the link between the TC decomposition and a structured Tucker decompositions, and propose a variant of the Krylov-Levenberg-Marquardt optimization, tailored for this problem. Many extensions can be considered, here we only mention decomposition of tensor with missing entries, which enables the tensor completion. Performance of the proposed algorithm is demonstrated on tensor decomposition of the sampled Rosenbrock function. It can be better modeled both as TC and canonical polyadic (CP) decomposition, but with TC, the reconstruction is possible with a lower number of function values.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor Chain Decomposition and Function Interpolation\",\"authors\":\"P. Tichavský, A. Phan\",\"doi\":\"10.1109/SSP53291.2023.10207942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensor Chain (TC) decomposition represents a given tensor as a chain (circle) of order-3 tensors (wagons) connected through tensor contractions. In this paper, we show the link between the TC decomposition and a structured Tucker decompositions, and propose a variant of the Krylov-Levenberg-Marquardt optimization, tailored for this problem. Many extensions can be considered, here we only mention decomposition of tensor with missing entries, which enables the tensor completion. Performance of the proposed algorithm is demonstrated on tensor decomposition of the sampled Rosenbrock function. It can be better modeled both as TC and canonical polyadic (CP) decomposition, but with TC, the reconstruction is possible with a lower number of function values.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10207942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

张量链(TC)分解将给定张量表示为通过张量收缩连接的3阶张量链(圆)。在本文中,我们展示了TC分解和结构化Tucker分解之间的联系,并提出了针对该问题量身定制的Krylov-Levenberg-Marquardt优化的变体。可以考虑许多扩展,这里我们只提到缺项张量的分解,这使得张量补全。通过对采样的Rosenbrock函数进行张量分解,证明了该算法的性能。它可以更好地建模为TC和正则多进(CP)分解,但使用TC,重构可能需要较少的函数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor Chain Decomposition and Function Interpolation
Tensor Chain (TC) decomposition represents a given tensor as a chain (circle) of order-3 tensors (wagons) connected through tensor contractions. In this paper, we show the link between the TC decomposition and a structured Tucker decompositions, and propose a variant of the Krylov-Levenberg-Marquardt optimization, tailored for this problem. Many extensions can be considered, here we only mention decomposition of tensor with missing entries, which enables the tensor completion. Performance of the proposed algorithm is demonstrated on tensor decomposition of the sampled Rosenbrock function. It can be better modeled both as TC and canonical polyadic (CP) decomposition, but with TC, the reconstruction is possible with a lower number of function values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信