水下影像中异常鱼类轨迹检测的隐马尔可夫模型

C. Spampinato, S. Palazzo
{"title":"水下影像中异常鱼类轨迹检测的隐马尔可夫模型","authors":"C. Spampinato, S. Palazzo","doi":"10.1109/MLSP.2012.6349768","DOIUrl":null,"url":null,"abstract":"In this paper we propose an automatic system for the identification of anomalous fish trajectories extracted by processing underwater footage. Our approach exploits Hidden Markov Models (HMMs) to represent and compare trajectories. Multi-Dimensional Scaling (MDS) is applied to project the trajectories onto a low-dimensional vector space, while preserving the similarity between the original data. Usual or normal events are then defined as set of trajectories clustered together, on which HMMs are trained and used to check whether a new trajectory matches one of the usual events, or can be labeled as anomalous. This approach was tested on 3700 trajectories, obtained by processing a set of underwater videos with state-of-art object detection and tracking algorithms, by assessing its capability to distinguish between correct trajectories and erroneous ones due, for instance, to object occlusions, tracker mis-associations and background movements.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Hidden Markov Models for detecting anomalous fish trajectories in underwater footage\",\"authors\":\"C. Spampinato, S. Palazzo\",\"doi\":\"10.1109/MLSP.2012.6349768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose an automatic system for the identification of anomalous fish trajectories extracted by processing underwater footage. Our approach exploits Hidden Markov Models (HMMs) to represent and compare trajectories. Multi-Dimensional Scaling (MDS) is applied to project the trajectories onto a low-dimensional vector space, while preserving the similarity between the original data. Usual or normal events are then defined as set of trajectories clustered together, on which HMMs are trained and used to check whether a new trajectory matches one of the usual events, or can be labeled as anomalous. This approach was tested on 3700 trajectories, obtained by processing a set of underwater videos with state-of-art object detection and tracking algorithms, by assessing its capability to distinguish between correct trajectories and erroneous ones due, for instance, to object occlusions, tracker mis-associations and background movements.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种通过处理水下影像提取异常鱼类轨迹的自动识别系统。我们的方法利用隐马尔可夫模型(hmm)来表示和比较轨迹。采用多维尺度(Multi-Dimensional Scaling, MDS)将轨迹投影到低维向量空间,同时保持原始数据之间的相似性。然后将通常或正常事件定义为一组聚集在一起的轨迹,hmm在这些轨迹上进行训练,并用于检查新轨迹是否与通常事件之一匹配,或者可以标记为异常。该方法在3700个轨迹上进行了测试,这些轨迹是通过使用最先进的目标检测和跟踪算法处理一组水下视频获得的,通过评估其区分正确轨迹和错误轨迹的能力,例如,由于物体遮挡,跟踪器错误关联和背景运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden Markov Models for detecting anomalous fish trajectories in underwater footage
In this paper we propose an automatic system for the identification of anomalous fish trajectories extracted by processing underwater footage. Our approach exploits Hidden Markov Models (HMMs) to represent and compare trajectories. Multi-Dimensional Scaling (MDS) is applied to project the trajectories onto a low-dimensional vector space, while preserving the similarity between the original data. Usual or normal events are then defined as set of trajectories clustered together, on which HMMs are trained and used to check whether a new trajectory matches one of the usual events, or can be labeled as anomalous. This approach was tested on 3700 trajectories, obtained by processing a set of underwater videos with state-of-art object detection and tracking algorithms, by assessing its capability to distinguish between correct trajectories and erroneous ones due, for instance, to object occlusions, tracker mis-associations and background movements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信