一些具有二面体对称的非平面构型的Atiyah猜想的验证

D. Djoković
{"title":"一些具有二面体对称的非平面构型的Atiyah猜想的验证","authors":"D. Djoković","doi":"10.2298/PIM0272023D","DOIUrl":null,"url":null,"abstract":"To an ordered TV-tuple of distinct points in the three-dimensional Euclidean space, Atiyah has associated an ordered TV-tuple of complex homogeneous polynomials in two variables of degree N - 1, each determined only up to a scalar factor. He has conjectured that these polynomials are linearly independent. In this note it is shown that Atiyah's conjecture is true if m of the points are on a line L and the remaining n = N - m points are the vertices of a regular n-gon whose plane is perpendicular to L and whose centroid lies on L.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Verification of Atiyah's conjecture for some nonplanar configurations with dihedral symmetry\",\"authors\":\"D. Djoković\",\"doi\":\"10.2298/PIM0272023D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To an ordered TV-tuple of distinct points in the three-dimensional Euclidean space, Atiyah has associated an ordered TV-tuple of complex homogeneous polynomials in two variables of degree N - 1, each determined only up to a scalar factor. He has conjectured that these polynomials are linearly independent. In this note it is shown that Atiyah's conjecture is true if m of the points are on a line L and the remaining n = N - m points are the vertices of a regular n-gon whose plane is perpendicular to L and whose centroid lies on L.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM0272023D\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM0272023D","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

对于三维欧几里得空间中不同点的有序TV-tuple, Atiyah关联了两个N - 1次变量的复齐次多项式的有序TV-tuple,每个变量仅确定一个标量因子。他推测这些多项式是线性无关的。在这篇笔记中,我们证明了Atiyah的猜想是成立的,如果m个点在一条直线L上,并且剩下的n = n- m个点是一个平面垂直于L且质心位于L上的正n形的顶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verification of Atiyah's conjecture for some nonplanar configurations with dihedral symmetry
To an ordered TV-tuple of distinct points in the three-dimensional Euclidean space, Atiyah has associated an ordered TV-tuple of complex homogeneous polynomials in two variables of degree N - 1, each determined only up to a scalar factor. He has conjectured that these polynomials are linearly independent. In this note it is shown that Atiyah's conjecture is true if m of the points are on a line L and the remaining n = N - m points are the vertices of a regular n-gon whose plane is perpendicular to L and whose centroid lies on L.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信