Naïve贝叶斯与k近邻算法在糖尿病早期诊断中的性能比较

Haviluddin, N. Puspitasari, Aji Ery Burhandenny, Andi Dhiya Awalia Nurulita, Dinnuhoni Trahutomo
{"title":"Naïve贝叶斯与k近邻算法在糖尿病早期诊断中的性能比较","authors":"Haviluddin, N. Puspitasari, Aji Ery Burhandenny, Andi Dhiya Awalia Nurulita, Dinnuhoni Trahutomo","doi":"10.3991/ijoe.v18i15.34143","DOIUrl":null,"url":null,"abstract":"Diabetes Mellitus (DM) is a chronic disease that occurs when the body cannot effectively use the insulin it produces. The use of artificial intelligence (AI) can provide a means to diagnose. This study aims to obtain the best classification of the Naïve Bayes (NB) and K-Nearest Neighbors (KNN) methods so that accurate results are obtained in diagnosing DM disease using a dataset originating from The Abdul Moeis Hospital, Samarinda, East Kalimantan, Indonesia. The results showed that the KNN performed better in accuracy, precision, and specificity with an Area Under the Curve (AUC) value 10% higher than NB. Overall, KNN obtained a better recall compared to the NB in order to DM diagnosis.","PeriodicalId":247144,"journal":{"name":"Int. J. Online Biomed. Eng.","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Naïve Bayes and K-Nearest Neighbor Algorithms Performance Comparison in Diabetes Mellitus Early Diagnosis\",\"authors\":\"Haviluddin, N. Puspitasari, Aji Ery Burhandenny, Andi Dhiya Awalia Nurulita, Dinnuhoni Trahutomo\",\"doi\":\"10.3991/ijoe.v18i15.34143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes Mellitus (DM) is a chronic disease that occurs when the body cannot effectively use the insulin it produces. The use of artificial intelligence (AI) can provide a means to diagnose. This study aims to obtain the best classification of the Naïve Bayes (NB) and K-Nearest Neighbors (KNN) methods so that accurate results are obtained in diagnosing DM disease using a dataset originating from The Abdul Moeis Hospital, Samarinda, East Kalimantan, Indonesia. The results showed that the KNN performed better in accuracy, precision, and specificity with an Area Under the Curve (AUC) value 10% higher than NB. Overall, KNN obtained a better recall compared to the NB in order to DM diagnosis.\",\"PeriodicalId\":247144,\"journal\":{\"name\":\"Int. J. Online Biomed. Eng.\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Online Biomed. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijoe.v18i15.34143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Online Biomed. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v18i15.34143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病(DM)是一种慢性疾病,当身体不能有效地利用它产生的胰岛素时就会发生。使用人工智能(AI)可以提供一种诊断手段。本研究旨在获得Naïve贝叶斯(NB)和k近邻(KNN)方法的最佳分类,以便使用来自印度尼西亚东加里曼丹Samarinda的Abdul Moeis医院的数据集获得准确的DM疾病诊断结果。结果表明,KNN在准确度、精密度和特异性方面均优于NB,曲线下面积(AUC)值比NB高10%。总的来说,与NB相比,KNN在诊断DM方面具有更好的召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Naïve Bayes and K-Nearest Neighbor Algorithms Performance Comparison in Diabetes Mellitus Early Diagnosis
Diabetes Mellitus (DM) is a chronic disease that occurs when the body cannot effectively use the insulin it produces. The use of artificial intelligence (AI) can provide a means to diagnose. This study aims to obtain the best classification of the Naïve Bayes (NB) and K-Nearest Neighbors (KNN) methods so that accurate results are obtained in diagnosing DM disease using a dataset originating from The Abdul Moeis Hospital, Samarinda, East Kalimantan, Indonesia. The results showed that the KNN performed better in accuracy, precision, and specificity with an Area Under the Curve (AUC) value 10% higher than NB. Overall, KNN obtained a better recall compared to the NB in order to DM diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信