s-Club聚类边删除问题的参数化复杂度

Fabrizio Montecchiani, Giacomo Ortali, Tommaso Piselli, Alessandra Tappini
{"title":"s-Club聚类边删除问题的参数化复杂度","authors":"Fabrizio Montecchiani, Giacomo Ortali, Tommaso Piselli, Alessandra Tappini","doi":"10.48550/arXiv.2205.10834","DOIUrl":null,"url":null,"abstract":"We study the parameterized complexity of the $s$-Club Cluster Edge Deletion problem: Given a graph $G$ and two integers $s \\ge 2$ and $k \\ge 1$, is it possible to remove at most $k$ edges from $G$ such that each connected component of the resulting graph has diameter at most $s$? This problem is known to be NP-hard already when $s = 2$. We prove that it admits a fixed-parameter tractable algorithm when parameterized by $s$ and the treewidth of the input graph.","PeriodicalId":212849,"journal":{"name":"Italian Conference on Theoretical Computer Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Parametrized Complexity of the s-Club Cluster Edge Deletion Problem\",\"authors\":\"Fabrizio Montecchiani, Giacomo Ortali, Tommaso Piselli, Alessandra Tappini\",\"doi\":\"10.48550/arXiv.2205.10834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the parameterized complexity of the $s$-Club Cluster Edge Deletion problem: Given a graph $G$ and two integers $s \\\\ge 2$ and $k \\\\ge 1$, is it possible to remove at most $k$ edges from $G$ such that each connected component of the resulting graph has diameter at most $s$? This problem is known to be NP-hard already when $s = 2$. We prove that it admits a fixed-parameter tractable algorithm when parameterized by $s$ and the treewidth of the input graph.\",\"PeriodicalId\":212849,\"journal\":{\"name\":\"Italian Conference on Theoretical Computer Science\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Conference on Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.10834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Conference on Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.10834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了$s$-Club聚类边删除问题的参数化复杂性:给定一个图$G$和两个整数$s \ge 2$和$k \ge 1$,是否有可能从$G$中删除最多$k$条边,使得结果图的每个连通成分的直径最多$s$?当$s = 2$时,这个问题已知是np困难的。我们证明了当参数化为$s$和输入图的树宽时,它允许一个固定参数的可处理算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Parametrized Complexity of the s-Club Cluster Edge Deletion Problem
We study the parameterized complexity of the $s$-Club Cluster Edge Deletion problem: Given a graph $G$ and two integers $s \ge 2$ and $k \ge 1$, is it possible to remove at most $k$ edges from $G$ such that each connected component of the resulting graph has diameter at most $s$? This problem is known to be NP-hard already when $s = 2$. We prove that it admits a fixed-parameter tractable algorithm when parameterized by $s$ and the treewidth of the input graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信