{"title":"多跳ad-hoc网络中数据包转发优化的协同实施","authors":"Mohamed-Haykel Zayani, D. Zeghlache","doi":"10.1109/WCNC.2012.6214100","DOIUrl":null,"url":null,"abstract":"Ad-hoc networks are independent of any infrastructure. The nodes are autonomous and make their own decisions. They also have limited energy resources. Thus, a node tends to behave selfishly when it is asked to forward the packets of other nodes. Indeed, it would rather choose to reject a forwarding request in order to save its energy. To overcome this problem, the nodes need to be motivated to cooperate. To this end, we propose a self-learning repeated game framework to enforce cooperation between the nodes of a network. This framework is inspired by the concept of “The Weakest Link” TV game. Each node has a utility function whose value depends on its cooperation in forwarding packets on a route as well as the cooperation of all the nodes that form this same route. The more these nodes cooperate the higher is their utility value. This would establish a cooperative spirit within the nodes of the networks. All the nodes will then more or less equally participate to the forwarding tasks which would then eventually guarantee a more efficient packets forwarding from sources to respective destinations. Simulations are run and the results show that the proposed framework efficiently enforces nodes to cooperate and outperforms two other self-learning repeated game frameworks which we are interested in.","PeriodicalId":329194,"journal":{"name":"2012 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cooperation enforcement for packet forwarding optimization in multi-hop ad-hoc networks\",\"authors\":\"Mohamed-Haykel Zayani, D. Zeghlache\",\"doi\":\"10.1109/WCNC.2012.6214100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ad-hoc networks are independent of any infrastructure. The nodes are autonomous and make their own decisions. They also have limited energy resources. Thus, a node tends to behave selfishly when it is asked to forward the packets of other nodes. Indeed, it would rather choose to reject a forwarding request in order to save its energy. To overcome this problem, the nodes need to be motivated to cooperate. To this end, we propose a self-learning repeated game framework to enforce cooperation between the nodes of a network. This framework is inspired by the concept of “The Weakest Link” TV game. Each node has a utility function whose value depends on its cooperation in forwarding packets on a route as well as the cooperation of all the nodes that form this same route. The more these nodes cooperate the higher is their utility value. This would establish a cooperative spirit within the nodes of the networks. All the nodes will then more or less equally participate to the forwarding tasks which would then eventually guarantee a more efficient packets forwarding from sources to respective destinations. Simulations are run and the results show that the proposed framework efficiently enforces nodes to cooperate and outperforms two other self-learning repeated game frameworks which we are interested in.\",\"PeriodicalId\":329194,\"journal\":{\"name\":\"2012 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC.2012.6214100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2012.6214100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cooperation enforcement for packet forwarding optimization in multi-hop ad-hoc networks
Ad-hoc networks are independent of any infrastructure. The nodes are autonomous and make their own decisions. They also have limited energy resources. Thus, a node tends to behave selfishly when it is asked to forward the packets of other nodes. Indeed, it would rather choose to reject a forwarding request in order to save its energy. To overcome this problem, the nodes need to be motivated to cooperate. To this end, we propose a self-learning repeated game framework to enforce cooperation between the nodes of a network. This framework is inspired by the concept of “The Weakest Link” TV game. Each node has a utility function whose value depends on its cooperation in forwarding packets on a route as well as the cooperation of all the nodes that form this same route. The more these nodes cooperate the higher is their utility value. This would establish a cooperative spirit within the nodes of the networks. All the nodes will then more or less equally participate to the forwarding tasks which would then eventually guarantee a more efficient packets forwarding from sources to respective destinations. Simulations are run and the results show that the proposed framework efficiently enforces nodes to cooperate and outperforms two other self-learning repeated game frameworks which we are interested in.