使用自动编码器的图像自动着色

Naman Sood, Naveen Nandakumar, R. S
{"title":"使用自动编码器的图像自动着色","authors":"Naman Sood, Naveen Nandakumar, R. S","doi":"10.1109/SPIN52536.2021.9566101","DOIUrl":null,"url":null,"abstract":"Colorization of images is one of the preliminary steps of image analysis and documentation. Autocolorization is an automated process of converting a single-channeled image into a complete colorized 3 channel RGB image. There has been extensive research gap in the field since the dawn of deep learning. This document is a model for a statistical-learning driven approach to approach Autocolorization through building an Encoder-decoder model with Convolutional neural networks. Learning Models: Keras, openCV, Numpy and Tensorflow. A direct function to convert grayscale into coloured images that can be coupled with various software or sensors. The results obtained provide a visualization of autocolorization with different regularization techniques and optimizers.","PeriodicalId":343177,"journal":{"name":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Colorization of images using Auto-encoders\",\"authors\":\"Naman Sood, Naveen Nandakumar, R. S\",\"doi\":\"10.1109/SPIN52536.2021.9566101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colorization of images is one of the preliminary steps of image analysis and documentation. Autocolorization is an automated process of converting a single-channeled image into a complete colorized 3 channel RGB image. There has been extensive research gap in the field since the dawn of deep learning. This document is a model for a statistical-learning driven approach to approach Autocolorization through building an Encoder-decoder model with Convolutional neural networks. Learning Models: Keras, openCV, Numpy and Tensorflow. A direct function to convert grayscale into coloured images that can be coupled with various software or sensors. The results obtained provide a visualization of autocolorization with different regularization techniques and optimizers.\",\"PeriodicalId\":343177,\"journal\":{\"name\":\"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIN52536.2021.9566101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN52536.2021.9566101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像的着色是图像分析和记录的初步步骤之一。自动着色是将单通道图像转换为完整的3通道RGB图像的自动化过程。自深度学习出现以来,该领域一直存在广泛的研究空白。本文档是一个统计学习驱动方法的模型,通过使用卷积神经网络构建编码器-解码器模型来实现自动着色。学习模型:Keras, openCV, Numpy和Tensorflow。将灰度转换为彩色图像的直接功能,可以与各种软件或传感器相结合。获得的结果提供了使用不同正则化技术和优化器的自着色可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Colorization of images using Auto-encoders
Colorization of images is one of the preliminary steps of image analysis and documentation. Autocolorization is an automated process of converting a single-channeled image into a complete colorized 3 channel RGB image. There has been extensive research gap in the field since the dawn of deep learning. This document is a model for a statistical-learning driven approach to approach Autocolorization through building an Encoder-decoder model with Convolutional neural networks. Learning Models: Keras, openCV, Numpy and Tensorflow. A direct function to convert grayscale into coloured images that can be coupled with various software or sensors. The results obtained provide a visualization of autocolorization with different regularization techniques and optimizers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信