Washington Fernandes de Souza, E. Rafikova, M. Meza, S. Gafurov
{"title":"欠驱动气垫船的反步轨迹跟踪","authors":"Washington Fernandes de Souza, E. Rafikova, M. Meza, S. Gafurov","doi":"10.1109/GFPS.2018.8472372","DOIUrl":null,"url":null,"abstract":"This paper represents the implementation of a control technique known as Backstepping for solution of the problem of trajectory tracking of an underactuated Hovercraft. The Hovercraft is a vehicle sustained by air cushion in its base, so it doesn’t have contact with the soil. The Hovercraft can move around over a solid or aquatic surface. The desired trajectory is presented as a virtual vehicle with the same dynamics as the actual one. The control methodology uses Backstepping to design the virtual velocity controls to globally asymptotically stabilize the positions at the origin. Controls for the torques also was designed the velocities of the vehicles. Numerical simulations were performed in order to demonstrate the effectiveness of the developed control design. This demonstration was done by means of the comparison of the reference trajectory and obtained theoretically. The considered Hovercraft converges to the reference trajectory for near initial conditions as well as for distant initial conditions. It results in a good performance of the proposed control strategy to solve the problem of trajectory tracking of an underactuated Hovercraft. In addition, the accommodation time was obtained to be smaller in exchange for an increase of the effort control due to increase of the gain of the controller.","PeriodicalId":273799,"journal":{"name":"2018 Global Fluid Power Society PhD Symposium (GFPS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backstepping Trajectory Tracking of Underactuated Hovercraft\",\"authors\":\"Washington Fernandes de Souza, E. Rafikova, M. Meza, S. Gafurov\",\"doi\":\"10.1109/GFPS.2018.8472372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper represents the implementation of a control technique known as Backstepping for solution of the problem of trajectory tracking of an underactuated Hovercraft. The Hovercraft is a vehicle sustained by air cushion in its base, so it doesn’t have contact with the soil. The Hovercraft can move around over a solid or aquatic surface. The desired trajectory is presented as a virtual vehicle with the same dynamics as the actual one. The control methodology uses Backstepping to design the virtual velocity controls to globally asymptotically stabilize the positions at the origin. Controls for the torques also was designed the velocities of the vehicles. Numerical simulations were performed in order to demonstrate the effectiveness of the developed control design. This demonstration was done by means of the comparison of the reference trajectory and obtained theoretically. The considered Hovercraft converges to the reference trajectory for near initial conditions as well as for distant initial conditions. It results in a good performance of the proposed control strategy to solve the problem of trajectory tracking of an underactuated Hovercraft. In addition, the accommodation time was obtained to be smaller in exchange for an increase of the effort control due to increase of the gain of the controller.\",\"PeriodicalId\":273799,\"journal\":{\"name\":\"2018 Global Fluid Power Society PhD Symposium (GFPS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Global Fluid Power Society PhD Symposium (GFPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GFPS.2018.8472372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Global Fluid Power Society PhD Symposium (GFPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GFPS.2018.8472372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Backstepping Trajectory Tracking of Underactuated Hovercraft
This paper represents the implementation of a control technique known as Backstepping for solution of the problem of trajectory tracking of an underactuated Hovercraft. The Hovercraft is a vehicle sustained by air cushion in its base, so it doesn’t have contact with the soil. The Hovercraft can move around over a solid or aquatic surface. The desired trajectory is presented as a virtual vehicle with the same dynamics as the actual one. The control methodology uses Backstepping to design the virtual velocity controls to globally asymptotically stabilize the positions at the origin. Controls for the torques also was designed the velocities of the vehicles. Numerical simulations were performed in order to demonstrate the effectiveness of the developed control design. This demonstration was done by means of the comparison of the reference trajectory and obtained theoretically. The considered Hovercraft converges to the reference trajectory for near initial conditions as well as for distant initial conditions. It results in a good performance of the proposed control strategy to solve the problem of trajectory tracking of an underactuated Hovercraft. In addition, the accommodation time was obtained to be smaller in exchange for an increase of the effort control due to increase of the gain of the controller.