{"title":"机器学习技术在矿井通风控制系统中的应用","authors":"A. Kashnikov, L. Levin","doi":"10.1109/SCM.2017.7970595","DOIUrl":null,"url":null,"abstract":"The purpose of the research is determination of mine ventilation system regulators positions providing required airflow on ventilated directions. Currently regulators positions are set iteratively that causes hunting. It is proposed to use historical data of the system for defining regulators functional dependencies on required airflow values with consideration of temporal variability of a ventilation network. The problem is solved by a regression model based on neural networks. Consequently, a set of model parameters is defined and the control algorithm of the system is modified for using a historical data set.","PeriodicalId":315574,"journal":{"name":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Applying machine learning techniques to mine ventilation control systems\",\"authors\":\"A. Kashnikov, L. Levin\",\"doi\":\"10.1109/SCM.2017.7970595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the research is determination of mine ventilation system regulators positions providing required airflow on ventilated directions. Currently regulators positions are set iteratively that causes hunting. It is proposed to use historical data of the system for defining regulators functional dependencies on required airflow values with consideration of temporal variability of a ventilation network. The problem is solved by a regression model based on neural networks. Consequently, a set of model parameters is defined and the control algorithm of the system is modified for using a historical data set.\",\"PeriodicalId\":315574,\"journal\":{\"name\":\"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCM.2017.7970595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XX IEEE International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCM.2017.7970595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applying machine learning techniques to mine ventilation control systems
The purpose of the research is determination of mine ventilation system regulators positions providing required airflow on ventilated directions. Currently regulators positions are set iteratively that causes hunting. It is proposed to use historical data of the system for defining regulators functional dependencies on required airflow values with consideration of temporal variability of a ventilation network. The problem is solved by a regression model based on neural networks. Consequently, a set of model parameters is defined and the control algorithm of the system is modified for using a historical data set.