基于空间关系的噪声图像综合分割

T. Nguyen, Q. M. J. Wu
{"title":"基于空间关系的噪声图像综合分割","authors":"T. Nguyen, Q. M. J. Wu","doi":"10.1109/ICSAI.2012.6223469","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new algorithm for an integrated image segmentation based on the combination of both Markov Random Fields (MRF) and Graph Cuts (GC). In the well-known GrabCut method, the T-link weights do not take into account the spatial relationship between the neighboring pixels. The proposed algorithm, unlike GrabCut method, incorporates this spatial relationship right into the T-link weights. The performance results obtained using natural images clearly demonstrate the robustness, accuracy and effectiveness of the proposed algorithm, as compared to other known methods.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrated segmentation of noisy image based on the spatial relationship\",\"authors\":\"T. Nguyen, Q. M. J. Wu\",\"doi\":\"10.1109/ICSAI.2012.6223469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new algorithm for an integrated image segmentation based on the combination of both Markov Random Fields (MRF) and Graph Cuts (GC). In the well-known GrabCut method, the T-link weights do not take into account the spatial relationship between the neighboring pixels. The proposed algorithm, unlike GrabCut method, incorporates this spatial relationship right into the T-link weights. The performance results obtained using natural images clearly demonstrate the robustness, accuracy and effectiveness of the proposed algorithm, as compared to other known methods.\",\"PeriodicalId\":164945,\"journal\":{\"name\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2012.6223469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于马尔可夫随机场(MRF)和图割(GC)相结合的图像分割算法。在众所周知的GrabCut方法中,T-link权重没有考虑相邻像素之间的空间关系。与GrabCut方法不同的是,该算法将这种空间关系直接纳入t链路权重中。与其他已知方法相比,使用自然图像获得的性能结果清楚地证明了该算法的鲁棒性、准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated segmentation of noisy image based on the spatial relationship
In this paper, we propose a new algorithm for an integrated image segmentation based on the combination of both Markov Random Fields (MRF) and Graph Cuts (GC). In the well-known GrabCut method, the T-link weights do not take into account the spatial relationship between the neighboring pixels. The proposed algorithm, unlike GrabCut method, incorporates this spatial relationship right into the T-link weights. The performance results obtained using natural images clearly demonstrate the robustness, accuracy and effectiveness of the proposed algorithm, as compared to other known methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信