基于芯片测量的容错CNN模板设计与优化

P. Foldesy, L. Kék, T. Roska, Á. Zarándy, G. Bártfai
{"title":"基于芯片测量的容错CNN模板设计与优化","authors":"P. Foldesy, L. Kék, T. Roska, Á. Zarándy, G. Bártfai","doi":"10.1109/CNNA.1998.685415","DOIUrl":null,"url":null,"abstract":"Proposes a generic method for finding non-propagating cellular neural network (CNN) templates that can be implemented reliably on a given CNN Universal Machine chip. The method has two main components: (i) adaptive optimization of templates based on measurements of actual CNN chips, (ii) simplification and decomposition of Boolean operators into a sequence of simpler ones that work correctly and more robustly on a given chip. Examples are presented using two stored-program CNNUM chips to demonstrate the effectiveness of the proposed method, whose advantages and limitations are also discussed.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fault tolerant CNN template design and optimization based on chip measurements\",\"authors\":\"P. Foldesy, L. Kék, T. Roska, Á. Zarándy, G. Bártfai\",\"doi\":\"10.1109/CNNA.1998.685415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes a generic method for finding non-propagating cellular neural network (CNN) templates that can be implemented reliably on a given CNN Universal Machine chip. The method has two main components: (i) adaptive optimization of templates based on measurements of actual CNN chips, (ii) simplification and decomposition of Boolean operators into a sequence of simpler ones that work correctly and more robustly on a given chip. Examples are presented using two stored-program CNNUM chips to demonstrate the effectiveness of the proposed method, whose advantages and limitations are also discussed.\",\"PeriodicalId\":171485,\"journal\":{\"name\":\"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1998.685415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种寻找非传播细胞神经网络(CNN)模板的通用方法,该模板可以在给定的CNN通用机器芯片上可靠地实现。该方法有两个主要组成部分:(i)基于实际CNN芯片测量的模板自适应优化,(ii)将布尔运算符简化并分解为一系列更简单的运算符,这些运算符在给定芯片上正确工作且更鲁棒。以两种存储程序CNNUM芯片为例,验证了该方法的有效性,并讨论了该方法的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault tolerant CNN template design and optimization based on chip measurements
Proposes a generic method for finding non-propagating cellular neural network (CNN) templates that can be implemented reliably on a given CNN Universal Machine chip. The method has two main components: (i) adaptive optimization of templates based on measurements of actual CNN chips, (ii) simplification and decomposition of Boolean operators into a sequence of simpler ones that work correctly and more robustly on a given chip. Examples are presented using two stored-program CNNUM chips to demonstrate the effectiveness of the proposed method, whose advantages and limitations are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信