{"title":"MapReduce中k-Dominant Skyline查询的高效处理","authors":"Hao Tian, M. A. Siddique, Y. Morimoto","doi":"10.1145/2658840.2658846","DOIUrl":null,"url":null,"abstract":"Filtering uninteresting data is important to utilize \"big data\". Skyline query is one of popular techniques to filter uninteresting data, in which it selects a set of points that are not dominated by another from a given large database. However, a skyline query often retrieves too many points to analyze intensively especially for high-dimensional dataset. In order to solve the problem, k-dominant skyline queries have been introduced, which can control the number of retrieved points. However, conventional algorithms for computing k-dominant skyline queries are not well suited for parallel and distributed environments, such as the MapReduce framework. In this paper we considered an efficient parallel algorithm to process k-dominant skyline query in the MapReduce framework. Extensive experiments are conducted to evaluate the algorithm under different settings of data distribution, dimensionality, and cardinality.","PeriodicalId":135661,"journal":{"name":"Data4U '14","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An Efficient Processing of k-Dominant Skyline Query in MapReduce\",\"authors\":\"Hao Tian, M. A. Siddique, Y. Morimoto\",\"doi\":\"10.1145/2658840.2658846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Filtering uninteresting data is important to utilize \\\"big data\\\". Skyline query is one of popular techniques to filter uninteresting data, in which it selects a set of points that are not dominated by another from a given large database. However, a skyline query often retrieves too many points to analyze intensively especially for high-dimensional dataset. In order to solve the problem, k-dominant skyline queries have been introduced, which can control the number of retrieved points. However, conventional algorithms for computing k-dominant skyline queries are not well suited for parallel and distributed environments, such as the MapReduce framework. In this paper we considered an efficient parallel algorithm to process k-dominant skyline query in the MapReduce framework. Extensive experiments are conducted to evaluate the algorithm under different settings of data distribution, dimensionality, and cardinality.\",\"PeriodicalId\":135661,\"journal\":{\"name\":\"Data4U '14\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data4U '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2658840.2658846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data4U '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2658840.2658846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Processing of k-Dominant Skyline Query in MapReduce
Filtering uninteresting data is important to utilize "big data". Skyline query is one of popular techniques to filter uninteresting data, in which it selects a set of points that are not dominated by another from a given large database. However, a skyline query often retrieves too many points to analyze intensively especially for high-dimensional dataset. In order to solve the problem, k-dominant skyline queries have been introduced, which can control the number of retrieved points. However, conventional algorithms for computing k-dominant skyline queries are not well suited for parallel and distributed environments, such as the MapReduce framework. In this paper we considered an efficient parallel algorithm to process k-dominant skyline query in the MapReduce framework. Extensive experiments are conducted to evaluate the algorithm under different settings of data distribution, dimensionality, and cardinality.