基于SVM、DSVM和自编码器的MFCC语音情感识别

Hadhami Aouani, Y. B. Ayed
{"title":"基于SVM、DSVM和自编码器的MFCC语音情感识别","authors":"Hadhami Aouani, Y. B. Ayed","doi":"10.1109/ATSIP.2018.8364518","DOIUrl":null,"url":null,"abstract":"Emotions recognition from speech is one of the most important sub domains in the field of signal processing. In this work, our system is a two-stage approach, namely feature extraction and classification engine. Firstly, two sets of feature are investigated which are: 39 Mel-frequency Cepstral Coefficient (MFCC) coefficients and 65 MFCC features extracted based on the work of [20]. Secondly, we use the Support Vector Machine (SVM) as the main classifier engine since it is the most common technique in the field of speech recognition. Besides that, we investigate the importance of the recent advances in machine learning including the deep kernel learning, as well as the various types of auto-encoder (the basic auto-encoder and the stacked auto-encoder). A large set of experiments are conducted on the SAVEE audio database. The experimental results show that DSVM method outperforms the standard SVM with a classification rate of 69.84% and 68.25% using 39 MFCC, respectively. Additionally, the auto-encoder method outperforms the standard SVM, yielding a classification rate of 73.01%.","PeriodicalId":332253,"journal":{"name":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Emotion recognition in speech using MFCC with SVM, DSVM and auto-encoder\",\"authors\":\"Hadhami Aouani, Y. B. Ayed\",\"doi\":\"10.1109/ATSIP.2018.8364518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotions recognition from speech is one of the most important sub domains in the field of signal processing. In this work, our system is a two-stage approach, namely feature extraction and classification engine. Firstly, two sets of feature are investigated which are: 39 Mel-frequency Cepstral Coefficient (MFCC) coefficients and 65 MFCC features extracted based on the work of [20]. Secondly, we use the Support Vector Machine (SVM) as the main classifier engine since it is the most common technique in the field of speech recognition. Besides that, we investigate the importance of the recent advances in machine learning including the deep kernel learning, as well as the various types of auto-encoder (the basic auto-encoder and the stacked auto-encoder). A large set of experiments are conducted on the SAVEE audio database. The experimental results show that DSVM method outperforms the standard SVM with a classification rate of 69.84% and 68.25% using 39 MFCC, respectively. Additionally, the auto-encoder method outperforms the standard SVM, yielding a classification rate of 73.01%.\",\"PeriodicalId\":332253,\"journal\":{\"name\":\"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2018.8364518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2018.8364518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

语音情感识别是信号处理领域中一个重要的子领域。在这项工作中,我们的系统是一个两阶段的方法,即特征提取和分类引擎。首先,研究了两组特征:39个Mel-frequency Cepstral Coefficient (MFCC)系数和65个基于[20]的工作提取的MFCC特征。其次,我们使用支持向量机(SVM)作为主要的分类器引擎,因为它是语音识别领域中最常用的技术。除此之外,我们还研究了机器学习的最新进展的重要性,包括深度核学习,以及各种类型的自编码器(基本自编码器和堆叠自编码器)。在SAVEE音频数据库上进行了大量的实验。实验结果表明,DSVM方法在39个MFCC下的分类率分别达到69.84%和68.25%,优于标准SVM。此外,自编码器方法优于标准支持向量机,分类率为73.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotion recognition in speech using MFCC with SVM, DSVM and auto-encoder
Emotions recognition from speech is one of the most important sub domains in the field of signal processing. In this work, our system is a two-stage approach, namely feature extraction and classification engine. Firstly, two sets of feature are investigated which are: 39 Mel-frequency Cepstral Coefficient (MFCC) coefficients and 65 MFCC features extracted based on the work of [20]. Secondly, we use the Support Vector Machine (SVM) as the main classifier engine since it is the most common technique in the field of speech recognition. Besides that, we investigate the importance of the recent advances in machine learning including the deep kernel learning, as well as the various types of auto-encoder (the basic auto-encoder and the stacked auto-encoder). A large set of experiments are conducted on the SAVEE audio database. The experimental results show that DSVM method outperforms the standard SVM with a classification rate of 69.84% and 68.25% using 39 MFCC, respectively. Additionally, the auto-encoder method outperforms the standard SVM, yielding a classification rate of 73.01%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信