{"title":"度量空间中聚类的次线性时间逼近格式","authors":"P. Indyk","doi":"10.1109/SFFCS.1999.814587","DOIUrl":null,"url":null,"abstract":"The metric 2-clustering problem is defined as follows: given a metric (or weighted graph) (X,d), partition X into two sets S(1) and S(2) in order to minimize the value of /spl Sigma//sub i//spl Sigma//sub {u,v}/spl sub/S(i)/d(u,v). In this paper, we show an approximation scheme for this problem.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":"{\"title\":\"A sublinear time approximation scheme for clustering in metric spaces\",\"authors\":\"P. Indyk\",\"doi\":\"10.1109/SFFCS.1999.814587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The metric 2-clustering problem is defined as follows: given a metric (or weighted graph) (X,d), partition X into two sets S(1) and S(2) in order to minimize the value of /spl Sigma//sub i//spl Sigma//sub {u,v}/spl sub/S(i)/d(u,v). In this paper, we show an approximation scheme for this problem.\",\"PeriodicalId\":385047,\"journal\":{\"name\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFFCS.1999.814587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A sublinear time approximation scheme for clustering in metric spaces
The metric 2-clustering problem is defined as follows: given a metric (or weighted graph) (X,d), partition X into two sets S(1) and S(2) in order to minimize the value of /spl Sigma//sub i//spl Sigma//sub {u,v}/spl sub/S(i)/d(u,v). In this paper, we show an approximation scheme for this problem.