实时系统的实际正式开发

S. Bradley, W. Henderson, D. Kendall, A. Robson
{"title":"实时系统的实际正式开发","authors":"S. Bradley, W. Henderson, D. Kendall, A. Robson","doi":"10.1109/RTOSS.1994.292563","DOIUrl":null,"url":null,"abstract":"The complexities of real-time systems are such that it is often thought necessary to give a formal justification of their correctness especially if they are to be used in a safety-critical environment. We describe our work on a formally based design method for real-time systems which allows the timing aspects of a concurrent system to be mathematically described and verified, as well as semi-automatically implemented. Our design language, AORTA, is a timed process algebra, with features to ensure that all designs can be implemented. A predictable real-time kernel is also described, which is used in the construction of a system from an AORTA design, and which allows the timing of the implementation to be verified.<<ETX>>","PeriodicalId":103713,"journal":{"name":"Proceedings of 11th IEEE Workshop on Real-Time Operating Systems and Software","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Practical formal development of real-time systems\",\"authors\":\"S. Bradley, W. Henderson, D. Kendall, A. Robson\",\"doi\":\"10.1109/RTOSS.1994.292563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexities of real-time systems are such that it is often thought necessary to give a formal justification of their correctness especially if they are to be used in a safety-critical environment. We describe our work on a formally based design method for real-time systems which allows the timing aspects of a concurrent system to be mathematically described and verified, as well as semi-automatically implemented. Our design language, AORTA, is a timed process algebra, with features to ensure that all designs can be implemented. A predictable real-time kernel is also described, which is used in the construction of a system from an AORTA design, and which allows the timing of the implementation to be verified.<<ETX>>\",\"PeriodicalId\":103713,\"journal\":{\"name\":\"Proceedings of 11th IEEE Workshop on Real-Time Operating Systems and Software\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 11th IEEE Workshop on Real-Time Operating Systems and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTOSS.1994.292563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 11th IEEE Workshop on Real-Time Operating Systems and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTOSS.1994.292563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于实时系统的复杂性,人们通常认为有必要对其正确性给出正式的证明,特别是在安全关键环境中使用时。我们描述了我们在实时系统的正式设计方法上的工作,该方法允许并行系统的时序方面被数学描述和验证,以及半自动实现。我们的设计语言AORTA是一种定时过程代数,具有确保所有设计都可以实现的功能。还描述了一个可预测的实时内核,它用于从主动脉设计构建系统,并允许验证实现的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical formal development of real-time systems
The complexities of real-time systems are such that it is often thought necessary to give a formal justification of their correctness especially if they are to be used in a safety-critical environment. We describe our work on a formally based design method for real-time systems which allows the timing aspects of a concurrent system to be mathematically described and verified, as well as semi-automatically implemented. Our design language, AORTA, is a timed process algebra, with features to ensure that all designs can be implemented. A predictable real-time kernel is also described, which is used in the construction of a system from an AORTA design, and which allows the timing of the implementation to be verified.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信