一种用于视觉运动估计的峰值神经网络结构

G. Orchard, R. Benosman, R. Etienne-Cummings, N. Thakor
{"title":"一种用于视觉运动估计的峰值神经网络结构","authors":"G. Orchard, R. Benosman, R. Etienne-Cummings, N. Thakor","doi":"10.1109/BioCAS.2013.6679698","DOIUrl":null,"url":null,"abstract":"Current interest in neuromorphic computing continues to drive development of sensors and hardware for spike-based computation. Here we describe a hierarchical architecture for visual motion estimation which uses a spiking neural network to exploit the sparse high temporal resolution data provided by neuromorphic vision sensors. Although spike-based computation differs from traditional computer vision approaches, our architecture is similar in principle to the canonical Lucas-Kanade algorithm. Output spikes from the architecture represent the direction of motion to the nearest 45 degrees, and the speed within a factor of √2 over the range 0.02 to 0.27 pixels/ms.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"A spiking neural network architecture for visual motion estimation\",\"authors\":\"G. Orchard, R. Benosman, R. Etienne-Cummings, N. Thakor\",\"doi\":\"10.1109/BioCAS.2013.6679698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current interest in neuromorphic computing continues to drive development of sensors and hardware for spike-based computation. Here we describe a hierarchical architecture for visual motion estimation which uses a spiking neural network to exploit the sparse high temporal resolution data provided by neuromorphic vision sensors. Although spike-based computation differs from traditional computer vision approaches, our architecture is similar in principle to the canonical Lucas-Kanade algorithm. Output spikes from the architecture represent the direction of motion to the nearest 45 degrees, and the speed within a factor of √2 over the range 0.02 to 0.27 pixels/ms.\",\"PeriodicalId\":344317,\"journal\":{\"name\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2013.6679698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

当前对神经形态计算的兴趣继续推动基于峰值计算的传感器和硬件的发展。本文描述了一种视觉运动估计的分层结构,该结构利用尖峰神经网络来利用神经形态视觉传感器提供的稀疏高时间分辨率数据。尽管基于峰值的计算与传统的计算机视觉方法不同,但我们的架构在原则上与经典的Lucas-Kanade算法相似。从架构的输出尖峰表示运动的方向到最近的45度,并在√2因子范围内0.02至0.27像素/ms的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spiking neural network architecture for visual motion estimation
Current interest in neuromorphic computing continues to drive development of sensors and hardware for spike-based computation. Here we describe a hierarchical architecture for visual motion estimation which uses a spiking neural network to exploit the sparse high temporal resolution data provided by neuromorphic vision sensors. Although spike-based computation differs from traditional computer vision approaches, our architecture is similar in principle to the canonical Lucas-Kanade algorithm. Output spikes from the architecture represent the direction of motion to the nearest 45 degrees, and the speed within a factor of √2 over the range 0.02 to 0.27 pixels/ms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信