{"title":"正交多项式序列的组合:2-5型关系","authors":"A. Belkebir, M. Bouras","doi":"10.37418/amsj.11.10.7","DOIUrl":null,"url":null,"abstract":"In the present paper, a new characterization of the orthogonality of a monic polynomials sequence $\\left\\{ Q_{n}\\right\\} _{n\\geq 0}$ is obtained. This is defined as a linear combination of another monic orthogonal polynomials sequence $\\left\\{ P_{n}\\right\\} _{n\\geq 0}$ such as% \\begin{equation*} Q_{n}(x)+r_{n}Q_{n-1}(x)=P_{n}(x)+s_{n}P_{n-1}(x)+t_{n}P_{n-2}\\left( x\\right) +v_{n}P_{n-3}\\left( x\\right) +w_{n}P_{n-4}(x),\\ n\\geq 0 \\end{equation*}% where $w_{n}r_{n}\\neq 0,$ for every $n\\geq 5.$ Futhermore, the relation between the corresponding linear functionals is showed to be \\begin{equation*} k\\left( x-c\\right) u=\\left( x^{4}+ax^{3}+bx^{2}+dx+e\\right) v \\end{equation*}% where $c,$ $a,$ $b,$ $d,$ $e\\in \\mathbb{C}$ and $k\\in \\mathbb{C}\\backslash\\{0\\}.$ Finally, an illustration using special case of the above type relation is given.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A COMBINATION OF ORTHOGONAL POLYNOMIALS SEQUENCES: 2-5 TYPE RELATION\",\"authors\":\"A. Belkebir, M. Bouras\",\"doi\":\"10.37418/amsj.11.10.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, a new characterization of the orthogonality of a monic polynomials sequence $\\\\left\\\\{ Q_{n}\\\\right\\\\} _{n\\\\geq 0}$ is obtained. This is defined as a linear combination of another monic orthogonal polynomials sequence $\\\\left\\\\{ P_{n}\\\\right\\\\} _{n\\\\geq 0}$ such as% \\\\begin{equation*} Q_{n}(x)+r_{n}Q_{n-1}(x)=P_{n}(x)+s_{n}P_{n-1}(x)+t_{n}P_{n-2}\\\\left( x\\\\right) +v_{n}P_{n-3}\\\\left( x\\\\right) +w_{n}P_{n-4}(x),\\\\ n\\\\geq 0 \\\\end{equation*}% where $w_{n}r_{n}\\\\neq 0,$ for every $n\\\\geq 5.$ Futhermore, the relation between the corresponding linear functionals is showed to be \\\\begin{equation*} k\\\\left( x-c\\\\right) u=\\\\left( x^{4}+ax^{3}+bx^{2}+dx+e\\\\right) v \\\\end{equation*}% where $c,$ $a,$ $b,$ $d,$ $e\\\\in \\\\mathbb{C}$ and $k\\\\in \\\\mathbb{C}\\\\backslash\\\\{0\\\\}.$ Finally, an illustration using special case of the above type relation is given.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.11.10.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.11.10.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文给出了一元多项式序列$\left\{ Q_{n}\right\} _{n\geq 0}$正交性的一个新性质。这被定义为另一个单正交多项式序列$\left\{ P_{n}\right\} _{n\geq 0}$的线性组合,例如% \begin{equation*} Q_{n}(x)+r_{n}Q_{n-1}(x)=P_{n}(x)+s_{n}P_{n-1}(x)+t_{n}P_{n-2}\left( x\right) +v_{n}P_{n-3}\left( x\right) +w_{n}P_{n-4}(x),\ n\geq 0 \end{equation*}% where $w_{n}r_{n}\neq 0,$ for every $n\geq 5.$ Futhermore, the relation between the corresponding linear functionals is showed to be \begin{equation*} k\left( x-c\right) u=\left( x^{4}+ax^{3}+bx^{2}+dx+e\right) v \end{equation*}% where $c,$ $a,$ $b,$ $d,$ $e\in \mathbb{C}$ and $k\in \mathbb{C}\backslash\{0\}.$ Finally, an illustration using special case of the above type relation is given.
A COMBINATION OF ORTHOGONAL POLYNOMIALS SEQUENCES: 2-5 TYPE RELATION
In the present paper, a new characterization of the orthogonality of a monic polynomials sequence $\left\{ Q_{n}\right\} _{n\geq 0}$ is obtained. This is defined as a linear combination of another monic orthogonal polynomials sequence $\left\{ P_{n}\right\} _{n\geq 0}$ such as% \begin{equation*} Q_{n}(x)+r_{n}Q_{n-1}(x)=P_{n}(x)+s_{n}P_{n-1}(x)+t_{n}P_{n-2}\left( x\right) +v_{n}P_{n-3}\left( x\right) +w_{n}P_{n-4}(x),\ n\geq 0 \end{equation*}% where $w_{n}r_{n}\neq 0,$ for every $n\geq 5.$ Futhermore, the relation between the corresponding linear functionals is showed to be \begin{equation*} k\left( x-c\right) u=\left( x^{4}+ax^{3}+bx^{2}+dx+e\right) v \end{equation*}% where $c,$ $a,$ $b,$ $d,$ $e\in \mathbb{C}$ and $k\in \mathbb{C}\backslash\{0\}.$ Finally, an illustration using special case of the above type relation is given.