求解多任务优化问题的个体导向进化算法

Xiaolin Wang, Q. Kang, Mengchu Zhou
{"title":"求解多任务优化问题的个体导向进化算法","authors":"Xiaolin Wang, Q. Kang, Mengchu Zhou","doi":"10.1109/ICNSC55942.2022.10004137","DOIUrl":null,"url":null,"abstract":"Multi-task optimization (MTO) is a novel emerging evolutionary computation paradigm that is used for solving multiple optimization tasks concurrently. Most MTO algorithms limit each individual to one task, and thus weaken the performance of information exchange. To address this issue and improve the efficiency of knowledge transfer, this work proposes an efficient MTO framework named individually-guided multi-task optimization (IMTO). It divides evolutions into vertical and horizontal ones. To further improve the efficiency of knowledge transfer, a partial individuals' learning scheme is used to choose suitable individuals to learn from other tasks. Experimental results show its superior advantages over the multifactorial evolutionary algorithm and its variants.","PeriodicalId":230499,"journal":{"name":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Individually-guided Evolutionary Algorithm for Solving Multi-task Optimization Problems\",\"authors\":\"Xiaolin Wang, Q. Kang, Mengchu Zhou\",\"doi\":\"10.1109/ICNSC55942.2022.10004137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-task optimization (MTO) is a novel emerging evolutionary computation paradigm that is used for solving multiple optimization tasks concurrently. Most MTO algorithms limit each individual to one task, and thus weaken the performance of information exchange. To address this issue and improve the efficiency of knowledge transfer, this work proposes an efficient MTO framework named individually-guided multi-task optimization (IMTO). It divides evolutions into vertical and horizontal ones. To further improve the efficiency of knowledge transfer, a partial individuals' learning scheme is used to choose suitable individuals to learn from other tasks. Experimental results show its superior advantages over the multifactorial evolutionary algorithm and its variants.\",\"PeriodicalId\":230499,\"journal\":{\"name\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC55942.2022.10004137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC55942.2022.10004137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多任务优化(Multi-task optimization, MTO)是一种新兴的用于同时求解多个优化任务的进化计算范式。大多数MTO算法将每个个体限制为一个任务,从而削弱了信息交换的性能。为了解决这一问题,提高知识转移的效率,本文提出了一种高效的多任务优化框架——个体引导多任务优化(IMTO)。它将进化分为垂直进化和水平进化。为了进一步提高知识转移的效率,采用局部个体学习方案选择合适的个体向其他任务学习。实验结果表明,该算法优于多因子进化算法及其变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Individually-guided Evolutionary Algorithm for Solving Multi-task Optimization Problems
Multi-task optimization (MTO) is a novel emerging evolutionary computation paradigm that is used for solving multiple optimization tasks concurrently. Most MTO algorithms limit each individual to one task, and thus weaken the performance of information exchange. To address this issue and improve the efficiency of knowledge transfer, this work proposes an efficient MTO framework named individually-guided multi-task optimization (IMTO). It divides evolutions into vertical and horizontal ones. To further improve the efficiency of knowledge transfer, a partial individuals' learning scheme is used to choose suitable individuals to learn from other tasks. Experimental results show its superior advantages over the multifactorial evolutionary algorithm and its variants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信