使用模板生成SPARQL查询

Saeedeh Shekarpour, S. Auer, A. N. Ngomo, D. Gerber, Sebastian Hellmann, Claus Stadler
{"title":"使用模板生成SPARQL查询","authors":"Saeedeh Shekarpour, S. Auer, A. N. Ngomo, D. Gerber, Sebastian Hellmann, Claus Stadler","doi":"10.3233/WIA-130275","DOIUrl":null,"url":null,"abstract":"The search for information on the Web of Data is becoming increasingly difficult due to its considerable growth. Especially novice users need to acquire both knowledge about the underlying ontology structure and proficiency in formulating formal queries e.g. SPARQL queries to retrieve information from Linked Data sources. So as to simplify and automate the querying and retrieval of information from such sources, this paper presents an approach for constructing SPARQL queries based on user-supplied keywords. Our approach utilizes a set of predefined basic graph pattern templates for generating adequate interpretations of user queries. This is achieved by obtaining ranked lists of candidate resource identifiers for the supplied keywords and then injecting these identifiers into suitable positions in the graph pattern templates. The main advantages of our approach are that it is completely agnostic of the underlying knowledge base and ontology schema, that it scales to large knowledge bases and is simple to use. We evaluate all 17 possible valid graph pattern templates by measuring their precision and recall on 53 queries against DBpedia. Our results show that 8 of these basic graph pattern templates return results with a precision above 70%. Our approach is implemented as a Web search interface and performs sufficiently fast to provide answers within an acceptable time frame even when used on large knowledge bases.","PeriodicalId":263450,"journal":{"name":"Web Intell. Agent Syst.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Generating SPARQL queries using templates\",\"authors\":\"Saeedeh Shekarpour, S. Auer, A. N. Ngomo, D. Gerber, Sebastian Hellmann, Claus Stadler\",\"doi\":\"10.3233/WIA-130275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The search for information on the Web of Data is becoming increasingly difficult due to its considerable growth. Especially novice users need to acquire both knowledge about the underlying ontology structure and proficiency in formulating formal queries e.g. SPARQL queries to retrieve information from Linked Data sources. So as to simplify and automate the querying and retrieval of information from such sources, this paper presents an approach for constructing SPARQL queries based on user-supplied keywords. Our approach utilizes a set of predefined basic graph pattern templates for generating adequate interpretations of user queries. This is achieved by obtaining ranked lists of candidate resource identifiers for the supplied keywords and then injecting these identifiers into suitable positions in the graph pattern templates. The main advantages of our approach are that it is completely agnostic of the underlying knowledge base and ontology schema, that it scales to large knowledge bases and is simple to use. We evaluate all 17 possible valid graph pattern templates by measuring their precision and recall on 53 queries against DBpedia. Our results show that 8 of these basic graph pattern templates return results with a precision above 70%. Our approach is implemented as a Web search interface and performs sufficiently fast to provide answers within an acceptable time frame even when used on large knowledge bases.\",\"PeriodicalId\":263450,\"journal\":{\"name\":\"Web Intell. Agent Syst.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intell. Agent Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/WIA-130275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell. Agent Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/WIA-130275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

由于数据网络的大量增长,在数据网络上搜索信息变得越来越困难。特别是新手用户需要掌握关于底层本体结构的知识,并熟练地制定正式查询,例如SPARQL查询,以从关联数据源检索信息。为了简化和自动化从这些来源查询和检索信息,本文提出了一种基于用户提供的关键字构造SPARQL查询的方法。我们的方法利用一组预定义的基本图形模式模板来生成对用户查询的充分解释。这是通过获取所提供关键字的候选资源标识符的排序列表,然后将这些标识符注入到图模式模板中的适当位置来实现的。我们的方法的主要优点是它完全不知道底层知识库和本体模式,它可以扩展到大型知识库,并且易于使用。我们对所有17个可能有效的图形模式模板进行了评估,测量了它们对DBpedia的53个查询的精确度和召回率。我们的结果表明,这些基本图形模式模板中有8个返回的结果精度在70%以上。我们的方法是作为Web搜索界面实现的,并且执行速度足够快,即使在大型知识库中使用,也可以在可接受的时间范围内提供答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating SPARQL queries using templates
The search for information on the Web of Data is becoming increasingly difficult due to its considerable growth. Especially novice users need to acquire both knowledge about the underlying ontology structure and proficiency in formulating formal queries e.g. SPARQL queries to retrieve information from Linked Data sources. So as to simplify and automate the querying and retrieval of information from such sources, this paper presents an approach for constructing SPARQL queries based on user-supplied keywords. Our approach utilizes a set of predefined basic graph pattern templates for generating adequate interpretations of user queries. This is achieved by obtaining ranked lists of candidate resource identifiers for the supplied keywords and then injecting these identifiers into suitable positions in the graph pattern templates. The main advantages of our approach are that it is completely agnostic of the underlying knowledge base and ontology schema, that it scales to large knowledge bases and is simple to use. We evaluate all 17 possible valid graph pattern templates by measuring their precision and recall on 53 queries against DBpedia. Our results show that 8 of these basic graph pattern templates return results with a precision above 70%. Our approach is implemented as a Web search interface and performs sufficiently fast to provide answers within an acceptable time frame even when used on large knowledge bases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信