高速图形分析与伽罗瓦系统

PPAA '14 Pub Date : 2014-02-16 DOI:10.1145/2567634.2567648
K. Pingali
{"title":"高速图形分析与伽罗瓦系统","authors":"K. Pingali","doi":"10.1145/2567634.2567648","DOIUrl":null,"url":null,"abstract":"The Galois project at UT Austin has developed a high-level programming model and a lightweight parallel execution engine that enable application writers to write and tune complex parallel applications at a high level of abstraction.\n This talk describes the experiences of our group and of our industrial collaborators in using the Galois system for \"big data\" graph analytics. We show that (i) the rich programming model of Galois enables application programmers to write sophisticated graph analytics algorithms that cannot be expressed directly in current graph analytics DSLs, (ii) even when the same algorithm is used, the lightweight execution engine permits Galois programs to run much faster than programs in other DSLs, and (iii) the APIs of most current graph analytics DSLs can be implemented on top of the Galois system in a few hundred lines of code.","PeriodicalId":379963,"journal":{"name":"PPAA '14","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"High-speed graph analytics with the galois system\",\"authors\":\"K. Pingali\",\"doi\":\"10.1145/2567634.2567648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Galois project at UT Austin has developed a high-level programming model and a lightweight parallel execution engine that enable application writers to write and tune complex parallel applications at a high level of abstraction.\\n This talk describes the experiences of our group and of our industrial collaborators in using the Galois system for \\\"big data\\\" graph analytics. We show that (i) the rich programming model of Galois enables application programmers to write sophisticated graph analytics algorithms that cannot be expressed directly in current graph analytics DSLs, (ii) even when the same algorithm is used, the lightweight execution engine permits Galois programs to run much faster than programs in other DSLs, and (iii) the APIs of most current graph analytics DSLs can be implemented on top of the Galois system in a few hundred lines of code.\",\"PeriodicalId\":379963,\"journal\":{\"name\":\"PPAA '14\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PPAA '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2567634.2567648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAA '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2567634.2567648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

UT Austin的Galois项目开发了一个高级编程模型和一个轻量级并行执行引擎,使应用程序编写人员能够在高层次抽象上编写和调优复杂的并行应用程序。这次演讲描述了我们小组和我们的工业合作者在使用伽罗瓦系统进行“大数据”图形分析方面的经验。我们展示了(i) Galois丰富的编程模型使应用程序程序员能够编写复杂的图形分析算法,而这些算法无法在当前的图形分析dsl中直接表达;(ii)即使使用相同的算法,轻量级执行引擎也允许Galois程序比其他dsl中的程序运行得快得多;(iii)大多数当前图形分析dsl的api可以在Galois系统之上实现,只需几百行代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-speed graph analytics with the galois system
The Galois project at UT Austin has developed a high-level programming model and a lightweight parallel execution engine that enable application writers to write and tune complex parallel applications at a high level of abstraction. This talk describes the experiences of our group and of our industrial collaborators in using the Galois system for "big data" graph analytics. We show that (i) the rich programming model of Galois enables application programmers to write sophisticated graph analytics algorithms that cannot be expressed directly in current graph analytics DSLs, (ii) even when the same algorithm is used, the lightweight execution engine permits Galois programs to run much faster than programs in other DSLs, and (iii) the APIs of most current graph analytics DSLs can be implemented on top of the Galois system in a few hundred lines of code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信