非高斯初始条件下被动目标跟踪

D. Lainiotis, P. Giannakopoulos, S. Katsikas
{"title":"非高斯初始条件下被动目标跟踪","authors":"D. Lainiotis, P. Giannakopoulos, S. Katsikas","doi":"10.23919/ECC.1999.7099491","DOIUrl":null,"url":null,"abstract":"In this paper the problem of target tracking using passive measurements is examined. The target is assumed to be travelling on a straight line with constant velocity. A new algorithm is proposed that takes into consideration the effects of the non-Gaussian initial conditions on the estimation of the position and velocity of the target. The new filter is based on the Lainiotis partitioning algorithm. Extensive simulation results show the superiority of the new filter over a tracker employing the extended Kalman filter and assuming Gaussian initial conditions.","PeriodicalId":117668,"journal":{"name":"1999 European Control Conference (ECC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive target tracking with non Gaussian initial conditions\",\"authors\":\"D. Lainiotis, P. Giannakopoulos, S. Katsikas\",\"doi\":\"10.23919/ECC.1999.7099491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the problem of target tracking using passive measurements is examined. The target is assumed to be travelling on a straight line with constant velocity. A new algorithm is proposed that takes into consideration the effects of the non-Gaussian initial conditions on the estimation of the position and velocity of the target. The new filter is based on the Lainiotis partitioning algorithm. Extensive simulation results show the superiority of the new filter over a tracker employing the extended Kalman filter and assuming Gaussian initial conditions.\",\"PeriodicalId\":117668,\"journal\":{\"name\":\"1999 European Control Conference (ECC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.1999.7099491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.1999.7099491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了利用被动测量进行目标跟踪的问题。假定目标沿匀速直线运动。提出了一种考虑非高斯初始条件对目标位置和速度估计影响的新算法。该滤波器基于Lainiotis分割算法。大量的仿真结果表明,该滤波器优于采用扩展卡尔曼滤波并假设高斯初始条件的跟踪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passive target tracking with non Gaussian initial conditions
In this paper the problem of target tracking using passive measurements is examined. The target is assumed to be travelling on a straight line with constant velocity. A new algorithm is proposed that takes into consideration the effects of the non-Gaussian initial conditions on the estimation of the position and velocity of the target. The new filter is based on the Lainiotis partitioning algorithm. Extensive simulation results show the superiority of the new filter over a tracker employing the extended Kalman filter and assuming Gaussian initial conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信