大型多gpu系统上并行FFT的性能分析

Alan Ayala, S. Tomov, M. Stoyanov, A. Haidar, J. Dongarra
{"title":"大型多gpu系统上并行FFT的性能分析","authors":"Alan Ayala, S. Tomov, M. Stoyanov, A. Haidar, J. Dongarra","doi":"10.1109/IPDPSW55747.2022.00072","DOIUrl":null,"url":null,"abstract":"In this paper we present a performance study of multidimensional Fast Fourier Transforms (FFT) with GPU accelerators on modern hybrid architectures, as those expected for upcoming exascale systems. We assess and leverage features from traditional implementations of parallel FFTs and provide an algorithm that encompasses a wide range of their parameters, and adds novel developments such as FFT grid shrinking and batched transforms. Next, we create a bandwidth model to quantify the computational costs and analyze the well-known communication bottleneck for All-to-All and Point-to-Point MPI exchanges. Then, using a tuning methodology, we are able to accelerate the FFT computation and reduce the communication cost, achieving linear scalability on a large-scale system with GPU accelerators. Finally, our performance analysis is extended to show that carefully tuning the algorithm can further accelerate applications heavily relying on FFTs, such is the case of molecular dynamics software. Our experiments were performed on Summit and Spock supercomputers with IBM Power9 cores, over 3000 NVIDIA V-100 GPUs, and AMD MI-100 GPUs.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Parallel FFT on Large Multi-GPU Systems\",\"authors\":\"Alan Ayala, S. Tomov, M. Stoyanov, A. Haidar, J. Dongarra\",\"doi\":\"10.1109/IPDPSW55747.2022.00072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a performance study of multidimensional Fast Fourier Transforms (FFT) with GPU accelerators on modern hybrid architectures, as those expected for upcoming exascale systems. We assess and leverage features from traditional implementations of parallel FFTs and provide an algorithm that encompasses a wide range of their parameters, and adds novel developments such as FFT grid shrinking and batched transforms. Next, we create a bandwidth model to quantify the computational costs and analyze the well-known communication bottleneck for All-to-All and Point-to-Point MPI exchanges. Then, using a tuning methodology, we are able to accelerate the FFT computation and reduce the communication cost, achieving linear scalability on a large-scale system with GPU accelerators. Finally, our performance analysis is extended to show that carefully tuning the algorithm can further accelerate applications heavily relying on FFTs, such is the case of molecular dynamics software. Our experiments were performed on Summit and Spock supercomputers with IBM Power9 cores, over 3000 NVIDIA V-100 GPUs, and AMD MI-100 GPUs.\",\"PeriodicalId\":286968,\"journal\":{\"name\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW55747.2022.00072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了在现代混合架构上使用GPU加速器的多维快速傅里叶变换(FFT)的性能研究,正如即将到来的百亿亿级系统所期望的那样。我们评估和利用传统的并行FFT实现的特性,并提供一种包含广泛参数的算法,并增加了FFT网格缩小和批处理变换等新开发。接下来,我们创建了一个带宽模型来量化计算成本,并分析了众所周知的所有对所有和点对点MPI交换的通信瓶颈。然后,使用调优方法,我们能够加速FFT计算并降低通信成本,在具有GPU加速器的大规模系统上实现线性可扩展性。最后,我们的性能分析扩展到表明仔细调整算法可以进一步加速严重依赖fft的应用程序,例如分子动力学软件。我们的实验是在Summit和Spock超级计算机上进行的,这些超级计算机具有IBM Power9内核,超过3000个NVIDIA V-100 gpu和AMD MI-100 gpu。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Parallel FFT on Large Multi-GPU Systems
In this paper we present a performance study of multidimensional Fast Fourier Transforms (FFT) with GPU accelerators on modern hybrid architectures, as those expected for upcoming exascale systems. We assess and leverage features from traditional implementations of parallel FFTs and provide an algorithm that encompasses a wide range of their parameters, and adds novel developments such as FFT grid shrinking and batched transforms. Next, we create a bandwidth model to quantify the computational costs and analyze the well-known communication bottleneck for All-to-All and Point-to-Point MPI exchanges. Then, using a tuning methodology, we are able to accelerate the FFT computation and reduce the communication cost, achieving linear scalability on a large-scale system with GPU accelerators. Finally, our performance analysis is extended to show that carefully tuning the algorithm can further accelerate applications heavily relying on FFTs, such is the case of molecular dynamics software. Our experiments were performed on Summit and Spock supercomputers with IBM Power9 cores, over 3000 NVIDIA V-100 GPUs, and AMD MI-100 GPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信