部分可分问题的并行滤波信赖域算法

Li Sun, Weijie Shi
{"title":"部分可分问题的并行滤波信赖域算法","authors":"Li Sun, Weijie Shi","doi":"10.1109/ICINIS.2008.49","DOIUrl":null,"url":null,"abstract":"We propose a parallelization of the multidimensional filter trust region methods to make them suitable for large scale problems. The parallelization reduces the storage problems caused by storing the filter point. The limited memory BFGS method is employed to obtain the Hessian approximation in the quadratic model of the trust region methods, which often yields a dramatic reduction in the number of function and gradient evaluation. As the special structure of the partially separable functions, each processor has to solve the subproblem in a lower dimensional subspace. Numerical results show that the parallelization is efficient.","PeriodicalId":185739,"journal":{"name":"2008 First International Conference on Intelligent Networks and Intelligent Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Filter Trust Region Algorithm for Partially Separable Problems\",\"authors\":\"Li Sun, Weijie Shi\",\"doi\":\"10.1109/ICINIS.2008.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a parallelization of the multidimensional filter trust region methods to make them suitable for large scale problems. The parallelization reduces the storage problems caused by storing the filter point. The limited memory BFGS method is employed to obtain the Hessian approximation in the quadratic model of the trust region methods, which often yields a dramatic reduction in the number of function and gradient evaluation. As the special structure of the partially separable functions, each processor has to solve the subproblem in a lower dimensional subspace. Numerical results show that the parallelization is efficient.\",\"PeriodicalId\":185739,\"journal\":{\"name\":\"2008 First International Conference on Intelligent Networks and Intelligent Systems\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 First International Conference on Intelligent Networks and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINIS.2008.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Intelligent Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINIS.2008.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种并行化的多维滤波器信任域方法,使其适用于大规模问题。并行化减少了由于存储过滤点而引起的存储问题。利用有限记忆BFGS方法在信赖域方法的二次模型中获得Hessian近似,通常可以大大减少函数和梯度求值的数量。由于部分可分函数的特殊结构,每个处理器都必须在低维子空间中求解子问题。数值结果表明,并行化是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Filter Trust Region Algorithm for Partially Separable Problems
We propose a parallelization of the multidimensional filter trust region methods to make them suitable for large scale problems. The parallelization reduces the storage problems caused by storing the filter point. The limited memory BFGS method is employed to obtain the Hessian approximation in the quadratic model of the trust region methods, which often yields a dramatic reduction in the number of function and gradient evaluation. As the special structure of the partially separable functions, each processor has to solve the subproblem in a lower dimensional subspace. Numerical results show that the parallelization is efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信