{"title":"扩展图的布局","authors":"V. Dujmovic, Anastasios Sidiropoulos, D. Wood","doi":"10.4086/CJTCS.2016.001","DOIUrl":null,"url":null,"abstract":"Bourgain and Yehudayoff recently constructed $O(1)$-monotone bipartite expanders. By combining this result with a generalisation of the unraveling method of Kannan, we construct 3-monotone bipartite expanders, which is best possible. We then show that the same graphs admit 3-page book embeddings, 2-queue layouts, 4-track layouts, and have simple thickness 2. All these results are best possible.","PeriodicalId":202345,"journal":{"name":"Chic. J. Theor. Comput. Sci.","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Layouts of Expander Graphs\",\"authors\":\"V. Dujmovic, Anastasios Sidiropoulos, D. Wood\",\"doi\":\"10.4086/CJTCS.2016.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bourgain and Yehudayoff recently constructed $O(1)$-monotone bipartite expanders. By combining this result with a generalisation of the unraveling method of Kannan, we construct 3-monotone bipartite expanders, which is best possible. We then show that the same graphs admit 3-page book embeddings, 2-queue layouts, 4-track layouts, and have simple thickness 2. All these results are best possible.\",\"PeriodicalId\":202345,\"journal\":{\"name\":\"Chic. J. Theor. Comput. Sci.\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chic. J. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4086/CJTCS.2016.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chic. J. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4086/CJTCS.2016.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bourgain and Yehudayoff recently constructed $O(1)$-monotone bipartite expanders. By combining this result with a generalisation of the unraveling method of Kannan, we construct 3-monotone bipartite expanders, which is best possible. We then show that the same graphs admit 3-page book embeddings, 2-queue layouts, 4-track layouts, and have simple thickness 2. All these results are best possible.